scholarly journals STUDY OF THE FIRE PERFORMANCE OF HYBRID STEEL-TIMBER CONNECTIONS WITH FULL-SCALE TESTS AND FINITE ELEMENT MODELLING

Author(s):  
Aaron O. Akotuah ◽  
Sabah G. Ali ◽  
Jeffrey Erochko ◽  
Xia Zhang ◽  
George V. Hadjisophocleous

Connection design is critical in timber buildings since the connections tend to have lower strength than the structural members themselves and they tend to fail in a brittle manner. The effect of connection geometry on the fire performance of a hybrid steel-timber shear connection is investigated by full-scale testing. These tests were conducted by exposing the test specimens to the standard time-temperature curve defined by CAN/ULC-S101 (CAN/ULC-S101, 2007). Test results showed that the fire resistance of these connections depends on the load ratio, the type of connection and the relative exposure of the steel plate to fire. Finite element models of the connections under fire were constructed using ABAQUS/CAE and these were validated using the test results. These numerical model results correlate well with test results with ±8.32% variation.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2978
Author(s):  
Zhi-Min Liu ◽  
Xue-Jin Huo ◽  
Guang-Ming Wang ◽  
Wen-Yu Ji

Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.


ce/papers ◽  
2017 ◽  
Vol 1 (5-6) ◽  
pp. 297-302
Author(s):  
Therese Sheehan ◽  
Xianghe Dai ◽  
Dennis Lam

2017 ◽  
Vol 8 (4) ◽  
pp. 354-376 ◽  
Author(s):  
Mohamed Rusthi ◽  
Poologanathan Keerthan ◽  
Mahen Mahendran ◽  
Anthony Ariyanayagam

Purpose This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations. Design/methodology/approach This research was focused on investigating the fire performance of LSF wall systems by using 3-D heat transfer finite element models of existing LSF wall system configurations. The analysis results were validated by using the available fire test results of five different LSF wall configurations. Findings The validated finite element models were used to conduct a parametric study on a range of non-load bearing and load bearing LSF wall configurations to predict their fire resistance levels (FRLs) for varying load ratios. Originality/value Fire performance of LSF wall systems with different configurations can be understood by performing full-scale fire tests. However, these full-scale fire tests are time consuming, labour intensive and expensive. On the other hand, finite element analysis (FEA) provides a simple method of investigating the fire performance of LSF wall systems to understand their thermal-mechanical behaviour. Recent numerical research studies have focused on investigating the fire performances of LSF wall systems by using finite element (FE) models. Most of these FE models were developed based on 2-D FE platform capable of performing either heat transfer or structural analysis separately. Therefore, this paper presents the details of a 3-D FEA methodology to develop the capabilities to perform fully-coupled thermal-mechanical analyses of LSF walls exposed to fire in future.


Author(s):  
Sylvester Agbo ◽  
Meng Lin ◽  
Iman Ameli ◽  
Ali Imanpour ◽  
Da-Ming Duan ◽  
...  

Abstract Pipelines subjected to displacement-controlled loading such as ground movement may experience significant longitudinal strain. This can potentially impact pipeline structural capacity and their leak-tight integrity. Reliable calibration of the tensile strain capacity (TSC) of pipelines plays a critical role in strain-based design (SBD) methods. Recent studies were focused mostly on high toughness modern pipelines, while limited research was performed on lower-grade vintage pipelines. However, a significant percentage of energy resources in North America is still being transported in vintage pipelines. Eight full-scale pressurized four-point bending tests were previously conducted on X42, NPS 22 vintage pipes with 12.7 mm wall thickness to investigate the effect of internal pressure and flaw size on TSC. The pipes were subjected to 80% and 30% specified minimum yield strength (SMYS) internal pressures with different girth weld flaw sizes machined at the girth weld center line. This paper evaluates the TSC of X42 vintage pipeline by utilizing ductile fracture mechanics models using damage plasticity models in ABAQUS extended finite element method (XFEM). The damage parameters required for simulating crack initiation and propagation in X42 vintage pipeline are calibrated numerically by comparing the numerical models with the full-scale test results. With the appropriate damage parameters, the numerical model can reasonably reproduce the full-scale experimental test results and can be used to carry out parametric analysis to characterize the effect of internal pressure and flaw size on TSC of X42 vintage pipes.


Author(s):  
Malcolm H. Ray

A method of comparing two acceleration time histories to determine whether they describe similar physical events is described. The method can be used to assess the repeatability of full-scale crash tests and it can also be used as a criterion for assessing how well a finite-element analysis of a collision event simulates a corresponding full-scale crash test. The method is used to compare a series of six identical crash tests and then is used to compare several finite-element analyses with full-scale crash test results.


Author(s):  
Patricia Llana ◽  
Richard Stringfellow ◽  
Ronald Mayville

The Office of Research and Development of the Federal Railroad Administration (FRA) and the Volpe Center are continuing to evaluate new technologies for increasing the safety of passengers and operators in rail equipment. In recognition of the importance of override prevention in train-to-train collisions in which one of the vehicles is a locomotive, and in light of the success of crash energy management technologies in cab car-led passenger trains, the Volpe Center seeks to evaluate the effectiveness of components that could be integrated into the end structure of a locomotive that are specifically designed to mitigate the effects of a collision and, in particular, to prevent override of one of the lead vehicles onto the other. A research program has been conducted to develop, fabricate and test two crashworthy components for the forward end of a locomotive: (1) a deformable anti-climber, and (2) a push-back coupler. Detailed designs for these components were developed, and the performance of each design was evaluated through large deformation dynamic finite element analysis (FEA). Designs for two test articles that could be used to verify the performance of the component designs in full-scale tests were also developed. The two test articles were fabricated and dynamically tested by means of rail car impact in order to verify certain performance characteristics of the two components relative to specific requirements. The tests were successful in demonstrating the effectiveness of the two design concepts. Test results were consistent with finite element model predictions in terms of energy absorption capability, force-displacement behavior and modes of deformation.


Author(s):  
Swamidas Punwani ◽  
Gopal Samavedam ◽  
Steve Kokkins

The paper describes locomotive and fuel tank crashworthiness research being conducted by the Federal Railroad Administration for improved safety of the locomotive crew under collision scenarios. The research involves static and dynamic impact strength evaluations of locomotive structural components. These evaluations which are based on full scale tests and simulations using finite element analysis are described in this paper. Correlations between the test and simulation results are also presented in some cases.


2020 ◽  
Vol 8 (7) ◽  
pp. 518
Author(s):  
Andrija Ljulj ◽  
Vedran Slapničar

This paper presents seakeeping test results for a coastal patrol ship (CPS) in the Croatian Navy (CN). The full-scale tests were conducted on a CPS prototype that was accepted by the CN. The seakeeping numerical prediction and model tests were done during preliminary project design. However, these results are not fully comparable with the prototype tests since the ship was lengthened in the last phases of the project. Key numerical calculations are presented. The CPS project aims to renew a part of the Croatian Coast Guard with five ships. After successful prototype acceptance trials, the Croatian Ministry of Defence (MoD) will continue building the first ship in the series in early 2020. Full-scale prototype seakeeping test results could be valuable in the design of similar CPS projects. The main aim of this paper is to publish parts of the sea trial results related to the seakeeping performance of the CPS. Coast guards around the world have numerous challenges related to peacetime tasks such as preventing human and drug trafficking, fighting terrorism, controlling immigration, and protecting the marine environmental. They must have reliable platforms with good seakeeping characteristics that are important for overall ship operations. The scientific purpose of this paper is to contribute to the design process of similar CPS projects in terms of the development of seakeeping requirements and their level of fulfillment on an actual ship.


2020 ◽  
Vol 10 (4) ◽  
pp. 1545
Author(s):  
Zongyuan Zhang ◽  
Hongyuan Fang ◽  
Bin Li ◽  
Fuming Wang

Concrete pipes are the most widely used municipal drainage pipes in China. When concrete pipes fall into years of disrepair, numerous problems appear. As one of the most common problems of concrete pipes, cracks impact on the deterioration of mechanical properties of pipes, which cannot be ignored. In the current work, normal concrete pipes and those with pre-existing cracks are tested on a full scale under an external compressive load. The effects of the length, depth, and location of cracks on the bearing capacity and mechanical properties of the concrete pipes are quantitatively analyzed. Based on the full-scale tests, three-dimensional finite element models of normal and cracked concrete pipes are developed, and the measured results are compared with the data of the finite element analysis. It is clear that the test measurements are in good agreement with the simulation results; the bearing capacity of a concrete pipe is inversely proportional to the length and depth of the crack, and the maximum circumferential strain of the pipe occurs at the location of the crack. The strain of the concrete pipe also reveals three stages of elasticity, plasticity, and failure as the external load rises. Finally, when the load series reaches the limit of the failure load of the concrete pipe with pre-existing cracks, the pipe breaks along the crack position.


Sign in / Sign up

Export Citation Format

Share Document