Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform

2014 ◽  
Vol 20 (8) ◽  
pp. 2254-2263 ◽  
Author(s):  
Zhaosheng Qian ◽  
Juanjuan Ma ◽  
Xiaoyue Shan ◽  
Hui Feng ◽  
Linxiang Shao ◽  
...  
2014 ◽  
Vol 20 (11) ◽  
pp. 2983-2983 ◽  
Author(s):  
Zhaosheng Qian ◽  
Juanjuan Ma ◽  
Xiaoyue Shan ◽  
Hui Feng ◽  
Linxiang Shao ◽  
...  

2017 ◽  
Vol 9 (6) ◽  
pp. 1011-1017 ◽  
Author(s):  
Zhimin Liu ◽  
Fang Zhang ◽  
Lin Cui ◽  
Kang Wang ◽  
Haijun Zhan

A novel electrochemiluminescence sensing platform for the sensitive detection of chlorpromazine (CPZ) was fabricated based on a Ru(bpy)32+/carbon quantum dots/gelatin composite film.


RSC Advances ◽  
2013 ◽  
Vol 3 (11) ◽  
pp. 3733 ◽  
Author(s):  
Yong-Lai Zhang ◽  
Lei Wang ◽  
Heng-Chao Zhang ◽  
Yang Liu ◽  
Hai-Yu Wang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (76) ◽  
pp. 72670-72675 ◽  
Author(s):  
X. E. Zhao ◽  
C. H. Lei ◽  
Y. H. Wang ◽  
F. Qu ◽  
S. Y. Zhu ◽  
...  

Pristine graphene quantum dots (GQDs) without any functionalization were used as probes to develop a sensitive and selective fluorescence sensing platform for the detection of tyrosinase (TYR) activity and its inhibitor screening for the first time.


2021 ◽  
Vol 17 (2) ◽  
pp. 312-321
Author(s):  
Jiamin Yan ◽  
Yuneng Lu ◽  
Shaowen Xie ◽  
Haihu Tan ◽  
Weilan Tan ◽  
...  

The establishment of sensing platform for trace analysis of Fe3+ in biological systems is meaningful for health monitoring. Herein, a Fe3+ sensitive fluorescent nanoprobe was constructed based on highly fluorescent N-doped carbon quantum dots (NCQDs) derived from bamboo stems through a hydrothermal method employing ethylenediamine as the nitrogen dopant. The prepared NCQDs had a uniformly distributed size and their mean size was around 2.43 nm. Abundant functional groups (C=N, N-H, C=O, and carboxyl) anchored on NCQDs demonstrated successful doping of N in CQDs. The obtained NCQDs possessed a high fluorescence quantum yield of 20.02% and outstanding fluorescence stability over a wide pH range and at high ionic strengths. Moreover, Fe3+ ions presented a specific fluorescent quenching effect to the as-prepared NCQDs. The calibration curve for fluorescence quenching degree corresponding to Fe3+ concentration showed a linear response in a range of 0.01–10 µM, and detection limit was 0.486 µM, which indicated that the NCQDs had high sensitivity to Fe3+ ions. Ascribed to these unique properties, the NCQDs were selected as luminescent probes for trace amount of Fe3+ ions in human serum. These results demonstrated their promising use in clinical diagnostics and other biologically relevant studies.


2018 ◽  
Vol 100 ◽  
pp. 148-154 ◽  
Author(s):  
Qian Qian Zhang ◽  
Bin Bin Chen ◽  
Hong Yan Zou ◽  
Yuan Fang Li ◽  
Cheng Zhi Huang

Sign in / Sign up

Export Citation Format

Share Document