Differential Reactivity of Metal Binding Domains of Copper ATPases towards Cisplatin and Colocalization of Copper and Platinum

2018 ◽  
Vol 24 (36) ◽  
pp. 8999-9003 ◽  
Author(s):  
Tiantian Fang ◽  
Yao Tian ◽  
Siming Yuan ◽  
Yaping Sheng ◽  
Fabio Arnesano ◽  
...  
Science ◽  
1986 ◽  
Vol 234 (4783) ◽  
pp. 1589-1589
Author(s):  
J. M. BERG

Metallomics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1472-1480 ◽  
Author(s):  
Kumaravel Ponnandai Shanmugavel ◽  
Pernilla Wittung-Stafshede

Using a yeast assay, we identified the roles of ATP7B's six metal-binding domains in internal copper transport and soluble chaperone capacity.


2001 ◽  
Vol 67 (10) ◽  
pp. 4678-4684 ◽  
Author(s):  
Henrik Wernérus ◽  
Janne Lehtiö ◽  
Tuula Teeri ◽  
Per-Åke Nygren ◽  
Stefan Ståhl

ABSTRACT Ni2+-binding staphylococci were generated through surface display of combinatorially engineered variants of a fungal cellulose-binding domain (CBD) from Trichoderma reeseicellulase Cel7A. Novel CBD variants were generated by combinatorial protein engineering through the randomization of 11 amino acid positions, and eight potentially Ni2+-binding CBDs were selected by phage display technology. These new variants were subsequently genetically introduced into chimeric surface proteins for surface display on Staphylococcus carnosus cells. The expressed chimeric proteins were shown to be properly targeted to the cell wall of S. carnosus cells, since full-length proteins could be extracted and affinity purified. Surface accessibility for the chimeric proteins was demonstrated, and furthermore, the engineered CBDs, now devoid of cellulose-binding capacity, were shown to be functional with regard to metal binding, since the recombinant staphylococci had gained Ni2+-binding capacity. Potential environmental applications for such tailor-made metal-binding bacteria as bioadsorbents in biofilters or biosensors are discussed.


2020 ◽  
Vol 295 (21) ◽  
pp. 7516-7528
Author(s):  
Tamar Cranford-Smith ◽  
Mohammed Jamshad ◽  
Mark Jeeves ◽  
Rachael A. Chandler ◽  
Jack Yule ◽  
...  

The ATPase SecA is an essential component of the bacterial Sec machinery, which transports proteins across the cytoplasmic membrane. Most SecA proteins contain a long C-terminal tail (CTT). In Escherichia coli, the CTT contains a structurally flexible linker domain and a small metal-binding domain (MBD). The MBD coordinates zinc via a conserved cysteine-containing motif and binds to SecB and ribosomes. In this study, we screened a high-density transposon library for mutants that affect the susceptibility of E. coli to sodium azide, which inhibits SecA-mediated translocation. Results from sequencing this library suggested that mutations removing the CTT make E. coli less susceptible to sodium azide at subinhibitory concentrations. Copurification experiments suggested that the MBD binds to iron and that azide disrupts iron binding. Azide also disrupted binding of SecA to membranes. Two other E. coli proteins that contain SecA-like MBDs, YecA and YchJ, also copurified with iron, and NMR spectroscopy experiments indicated that YecA binds iron via its MBD. Competition experiments and equilibrium binding measurements indicated that the SecA MBD binds preferentially to iron and that a conserved serine is required for this specificity. Finally, structural modeling suggested a plausible model for the octahedral coordination of iron. Taken together, our results suggest that SecA-like MBDs likely bind to iron in vivo.


2020 ◽  
Vol 21 (15) ◽  
pp. 5536
Author(s):  
Michael Zaccak ◽  
Zena Qasem ◽  
Lada Gevorkyan-Airapetov ◽  
Sharon Ruthstein

Copper’s essentiality and toxicity mean it requires a sophisticated regulation system for its acquisition, cellular distribution and excretion, which until now has remained elusive. Herein, we applied continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopy in solution to resolve the copper trafficking mechanism in humans, by considering the route travelled by Cu(I) from the metallochaperone Atox1 to the metal binding domains of ATP7B. Our study revealed that Cu(I) is most likely mediated by the binding of the Atox1 monomer to metal binding domain 1 (MBD1) and MBD4 of ATP7B in the final part of its extraction pathway, while the other MBDs mediate this interaction and participate in copper transfer between the various MBDs to the ATP7B membrane domain. This research also proposes that MBD1-3 and MBD4-6 act as two independent units.


Science ◽  
1986 ◽  
Vol 234 (4783) ◽  
pp. 1589-1589 ◽  
Author(s):  
R. Saavedra

Sign in / Sign up

Export Citation Format

Share Document