exogenous ligands
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Carrie Hiser ◽  
Beronda L. Montgomery ◽  
Shelagh Ferguson-Miller

AbstractThe ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Magnus Bäck ◽  
François Boulay ◽  
Nan Chiang ◽  
Sven-Erik Dahlén ◽  
Claes Dahlgren ◽  
...  

The formylpeptide receptors (nomenclature agreed by the NC-IUPHAR Subcommittee on the formylpeptide receptor family [196]) respond to exogenous ligands such as the bacterial product fMet-Leu-Phe (fMLP) and endogenous ligands such as lipoxin A4 (LXA4), 15-epi-lipoxin A4, annexin I , cathepsin G, amyloid β42, serum amyloid A and spinorphin, derived from β-haemoglobin. FPR1 also serves as a plague receptor for selective destruction of human immune cells by Y. pestis [135]. The FPR1/2 agonists 'compound 17b' and 'compound 43' have shown cardiac protective functions [149, 64].


2021 ◽  
Vol 118 (13) ◽  
pp. e2100921118
Author(s):  
Rhiannon M. Evans ◽  
Natalie Krahn ◽  
Bonnie J. Murphy ◽  
Harrison Lee ◽  
Fraser A. Armstrong ◽  
...  

In [NiFe]-hydrogenases, the active-site Ni is coordinated by four cysteine-S ligands (Cys; C), two of which are bridging to the Fe(CO)(CN)2 fragment. Substitution of a single Cys residue by selenocysteine (Sec; U) occurs occasionally in nature. Using a recent method for site-specific Sec incorporation into proteins, each of the four Ni-coordinating cysteine residues in the oxygen-tolerant Escherichia coli [NiFe]-hydrogenase-1 (Hyd-1) has been replaced by U to identify its importance for enzyme function. Steady-state solution activity of each Sec-substituted enzyme (on a per-milligram basis) is lowered, although this may reflect the unquantified presence of recalcitrant inactive/immature/misfolded forms. Protein film electrochemistry, however, reveals detailed kinetic data that are independent of absolute activities. Like native Hyd-1, the variants have low apparent KMH2 values, do not produce H2 at pH 6, and display the same onset overpotential for H2 oxidation. Mechanistically important differences were identified for the C576U variant bearing the equivalent replacement found in native [NiFeSe]-hydrogenases, its extreme O2 tolerance (apparent KMH2 and Vmax [solution] values relative to native Hyd-1 of 0.13 and 0.04, respectively) implying the importance of a selenium atom in the position cis to the site where exogenous ligands (H−, H2, O2) bind. Observation of the same unusual electrocatalytic signature seen earlier for the proton transfer-defective E28Q variant highlights the direct role of the chalcogen atom (S/Se) at position 576 close to E28, with the caveat that Se is less effective than S in facilitating proton transfer away from the Ni during H2 oxidation by this enzyme.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuoyue Li ◽  
Kayleen J. McCafferty ◽  
Robert L. Judd

Hydroxycarboxylic acid receptor 2 (HCA2) is vital for sensing intermediates of metabolism, including β-hydroxybutyrate and butyrate. It also regulates profound anti-inflammatory effects in various tissues, indicating that HCA2 may serve as an essential therapeutic target for mediating inflammation-associated diseases. Butyrate and niacin, endogenous and exogenous ligands of HCA2, have been reported to play an essential role in maintaining intestinal homeostasis. HCA2, predominantly expressed in diverse immune cells, is also present in intestinal epithelial cells (IECs), where it regulates the intricate communication network between diet, microbiota, and immune cells. This review summarizes the physiological role of HCA2 in intestinal homeostasis and its pathological role in intestinal inflammation and cancer.


2021 ◽  
Vol 120 (3) ◽  
pp. 336a
Author(s):  
Edwin C. Fluck ◽  
Taylor Hughes ◽  
Ruth Pumroy ◽  
Vera Moiseenkova-Bell

2021 ◽  
Vol 22 (2) ◽  
pp. 757
Author(s):  
Marco Gargaro ◽  
Giulia Scalisi ◽  
Giorgia Manni ◽  
Giada Mondanelli ◽  
Ursula Grohmann ◽  
...  

The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kendal G. Cooper ◽  
Audrey Chong ◽  
Laszlo Kari ◽  
Brendan Jeffrey ◽  
Tregei Starr ◽  
...  

AbstractIn the enteric pathogen Salmonella enterica serovar Typhimurium, invasion and motility are coordinated by the master regulator HilD, which induces expression of the type III secretion system 1 (T3SS1) and motility genes. Methyl-accepting chemotaxis proteins (MCPs) detect specific ligands and control the direction of the flagellar motor, promoting tumbling and changes in direction (if a repellent is detected) or smooth swimming (in the presence of an attractant). Here, we show that HilD induces smooth swimming by upregulating an uncharacterized MCP (McpC), and this is important for invasion of epithelial cells. Remarkably, in vitro assays show that McpC can suppress tumbling and increase smooth swimming in the absence of exogenous ligands. Expression of mcpC is repressed by the universal regulator H-NS, which can be displaced by HilD. Our results highlight the importance of smooth swimming for Salmonella Typhimurium invasiveness and indicate that McpC can act via a ligand-independent mechanism when incorporated into the chemotactic receptor array.


2020 ◽  
Vol 21 (22) ◽  
pp. 8797
Author(s):  
Odile Poulain-Godefroy ◽  
Mélodie Bouté ◽  
Julie Carrard ◽  
Daniel Alvarez-Simon ◽  
Anne Tsicopoulos ◽  
...  

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has emerged as an important player in asthma control. AhR is responsive to environmental molecules and endogenous or dietary metabolites and regulates innate and adaptive immune responses. Binding of this receptor by different ligands has led to seemingly opposite responses in different asthma models. In this review, we present two sides of the same coin, with the beneficial and deleterious roles of AhR evaluated using known endogenous or exogenous ligands, deficient mice or antagonists. On one hand, AhR has an anti-inflammatory role since its activation in dendritic cells blocks the generation of pro-inflammatory T cells or shifts macrophages toward an anti-inflammatory M2 phenotype. On the other hand, AhR activation by particle-associated polycyclic aromatic hydrocarbons from the environment is pro-inflammatory, inducing mucus hypersecretion, airway remodelling, dysregulation of antigen presenting cells and exacerbates asthma features. Data concerning the role of AhR in cells from asthmatic patients are also reviewed, since AhR could represent a potential target for therapeutic immunomodulation.


2020 ◽  
Vol 12 (22) ◽  
pp. 2001-2018
Author(s):  
Simone Ronsisvalle ◽  
Federica Panarello ◽  
Angelo Spadaro ◽  
Silvia Franchini ◽  
Matteo Pappalardo ◽  
...  

Background: Central and peripheral analgesia without adverse effects relies on the identification of μ-opioid agonists that are able to activate ‘basal’ antinociceptive pathways. Recently developed μ-selective benzomorphan agonists that are not antagonized by naloxone do not activate G-proteins and β-arrestins. Which pathways do μ receptors activate? How can each of them be selectively activated? What role is played by allosteric binding sites? Methodology & results: Molecular modeling studies characterize the amino acid residues involved in the interaction with various classes of endogenous and exogenous ligands and with agonists and antagonists. Conclusions: Critical binding differences between various classes of agonists with different pharmacological profiles have been identified. MML series binding poses may be relevant in the search for an antinociception agent without side effects.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2294
Author(s):  
Robin Park ◽  
Shreya Madhavaram ◽  
Jong Dae Ji

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that plays a crucial role in bone remodeling through altering the interplay between bone-forming osteoblasts and bone-resorbing osteoclasts. While effects of AhR signaling in osteoblasts are well understood, the role and mechanism of AhR signaling in regulating osteoclastogenesis is not widely understood. AhR, when binding with exogenous ligands (environmental pollutants such as polycylic aryl hydrocarbon (PAH), dioxins) or endogenous ligand indoxyl-sulfate (IS), has dual functions that are mediated by the nature of the binding ligand, binding time, and specific pathways of distinct ligands. In this review, AhR is discussed with a focus on (i) the role of AhR in osteoclast differentiation and function and (ii) the mechanisms of AhR signaling in inhibiting or promoting osteoclastogenesis. These findings facilitate an understanding of the role of AhR in the functional regulation of osteoclasts and in osteoclast-induced bone destructive conditions such as rheumatoid arthritis and cancer.


Sign in / Sign up

Export Citation Format

Share Document