scholarly journals Catalytic Platinum Nanoparticles Decorated with Subnanometer Molybdenum Clusters for Biomass Processing

2020 ◽  
Vol 26 (23) ◽  
pp. 5174-5179 ◽  
Author(s):  
Yiteng Zheng ◽  
Ziyu Tang ◽  
Simon G. Podkolzin
2019 ◽  
Author(s):  
Nan An ◽  
Diana Ainembabazi ◽  
Kavya Samudrala ◽  
Christopher Reid ◽  
Kare Wilson ◽  
...  

<p>Here we report the synthesis, characterization and activity of tunable Pd-doped hydrotalcites (Pd-HTs) for the decarbonylation of furfural, hydroxymethylfurfural (HMF), aromatic and aliphatic aldehydes under microwave conditions. The decarbonylation activity reported is a notable improvement over prior heterogeneous catalysts for this process. Furfural decarbonylation is optimized in a benign solvent compatible with biomass processing - ethanol, under relatively mild conditions and short reaction times. HMF selectively affords excellent yields of furfuryl alcohol with no humin formation, but longer reaction can also afford furan via tandem alcohol dehydrogenation and decarbonylation. Yields of substituted benzaldehydes are related to calculated Mulliken charge of the carbonyl carbon. The activity and selectivity differences can be traced to loading-dependent differences in Pd speciation on the catalysts. Poisoning studies show inverse correlation between Pd loading and metal leaching: Pd-HTs with lowest Pd loading, which consist of highly dispersed and oxidized Pd species, operate heterogeneously with negligible metal leaching. Recycling experiments are consistent with this trend, offering potential for further optimization to improve robustness.</p>


2011 ◽  
Vol 1 (2) ◽  
pp. 162-165 ◽  
Author(s):  
Yoko Yoshihisa ◽  
Mariame Ali Hassan ◽  
Takashi Kondo ◽  
Tadamichi Shimizu

2020 ◽  
Vol 9 (1) ◽  
pp. 386-398 ◽  
Author(s):  
Mahmood S. Jameel ◽  
Azlan Abdul Aziz ◽  
Mohammed Ali Dheyab

AbstractPlatinum nanoparticles (Pt NPs) have attracted interest in catalysis and biomedical applications due to their unique structural, optical, and catalytic properties. However, the conventional synthesis of Pt NPs using the chemical and physical methods is constrained by the use of harmful and costly chemicals, intricate preparation requirement, and high energy utilization. Hence, this review emphasizes on the green synthesis of Pt NPs using plant extracts as an alternative approach due to its simplicity, convenience, inexpensiveness, easy scalability, low energy requirement, environmental friendliness, and minimum usage of hazardous materials and maximized efficiency of the synthesis process. The underlying complex processes that cover the green synthesis (biosynthesis) of Pt NPs were reviewed. This review affirms the effects of different critical parameters (pH, reaction temperature, reaction time, and biomass dosage) on the size and shape of the synthesized Pt NPs. For instance, the average particle size of Pt NPs was reported to decrease with increasing pH, reaction temperature, and concentration of plant extract.


Author(s):  
Antonio García-Moyano ◽  
Yuleima Diaz ◽  
José Navarro ◽  
David Almendral ◽  
Pål Puntervoll ◽  
...  

Abstract To support the bio-based industry in development of environment-friendly processes and products, an optimal toolbox of biocatalysts is key. Although functional screen of (meta)genomic libraries may potentially contribute to identifying new enzymes, the discovery of new enzymes meeting industry compliance demands is still challenging. This is particularly noticeable in the case of proteases, for which the reports of metagenome-derived proteases with industrial applicability are surprisingly limited. Indeed, proteolytic clones have been typically assessed by its sole activity on casein or skim milk and limited to mild screening conditions. Here, we demonstrate the use of six industry-relevant animal and plant by-products, namely bone, feather, blood meals, gelatin, gluten, and zein, as complementary substrates in functional screens and show the utility of temperature as a screening parameter to potentially discover new broad-substrate range and robust proteases for the biorefinery industry. By targeting 340,000 clones from two libraries of pooled isolates of mesophilic and thermophilic marine bacteria and two libraries of microbial communities inhabiting marine environments, we identified proteases in four of eleven selected clones that showed activity against all substrates herein tested after prolonged incubation at 55 °C. Following sequencing, in silico analysis and recombinant expression in Escherichia coli, one functional protease, 58% identical at sequence level to previously reported homologs, was found to readily hydrolyze highly insoluble zein at temperatures up to 50 °C and pH 9–11. It is derived from a bacterial group whose ability to degrade zein was unknown. This study reports a two-step screen resulting in identification of a new marine metagenome-derived protease with zein-hydrolytic properties at common biomass processing temperatures that could be useful for the modern biorefinery industry. Key points • A two-step multi-substrate strategy for discovery of robust proteases. • Feasible approach for shortening enzyme optimization to industrial demands. • A new temperature-tolerant protease efficiently hydrolyzes insoluble zein.


ACS Nano ◽  
2021 ◽  
Vol 15 (2) ◽  
pp. 2643-2653 ◽  
Author(s):  
Jean-François Lemineur ◽  
Paolo Ciocci ◽  
Jean-Marc Noël ◽  
Hongxin Ge ◽  
Catherine Combellas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document