functional screen
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 23)

H-INDEX

32
(FIVE YEARS 2)

Author(s):  
Kelly M. Schiabor Barrett ◽  
Max Masnick ◽  
Kathryn E. Hatchell ◽  
Juliann M. Savatt ◽  
Natalie Banet ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jessy Carol Ntunzwenimana ◽  
Gabrielle Boucher ◽  
Jean Paquette ◽  
Hugues Gosselin ◽  
Azadeh Alikashani ◽  
...  

Abstract Background Genetic studies have been tremendously successful in identifying genomic regions associated with a wide variety of phenotypes, although the success of these studies in identifying causal genes, their variants, and their functional impacts has been more limited. Methods We identified 145 genes from IBD-associated genomic loci having endogenous expression within the intestinal epithelial cell compartment. We evaluated the impact of lentiviral transfer of the open reading frame (ORF) of these IBD genes into the HT-29 intestinal epithelial cell line via transcriptomic analyses. By comparing the genes in which expression was modulated by each ORF, as well as the functions enriched within these gene lists, we identified ORFs with shared impacts and their putative disease-relevant biological functions. Results Analysis of the transcriptomic data for cell lines expressing the ORFs for known causal genes such as HNF4a, IFIH1, and SMAD3 identified functions consistent with what is already known for these genes. These analyses also identified two major clusters of genes: Cluster 1 contained the known IBD causal genes IFIH1, SBNO2, NFKB1, and NOD2, as well as genes from other IBD loci (ZFP36L1, IRF1, GIGYF1, OTUD3, AIRE and PITX1), whereas Cluster 2 contained the known causal gene KSR1 and implicated DUSP16 from another IBD locus. Our analyses highlight how multiple IBD gene candidates can impact on epithelial structure and function, including the protection of the mucosa from intestinal microbiota, and demonstrate that DUSP16 acts a regulator of MAPK activity and contributes to mucosal defense, in part via its regulation of the polymeric immunoglobulin receptor, involved in the protection of the intestinal mucosa from enteric microbiota. Conclusions This functional screen, based on expressing IBD genes within an appropriate cellular context, in this instance intestinal epithelial cells, resulted in changes to the cell’s transcriptome that are relevant to their endogenous biological function(s). This not only helped in identifying likely causal genes within genetic loci but also provided insight into their biological functions. Furthermore, this work has highlighted the central role of intestinal epithelial cells in IBD pathophysiology, providing a scientific rationale for a drug development strategy that targets epithelial functions in addition to the current therapies targeting immune functions.


2021 ◽  
Author(s):  
Jessy Carol Ntunzwenimana ◽  
Gabrielle Boucher ◽  
Jean Paquette ◽  
Hugues Gosselin ◽  
Azadeh Alikashani ◽  
...  

Background: Genetic studies have been tremendously successful in identifying genomic regions associated with a wide variety of phenotypes, although the success of these studies in identifying causal genes, their variants, and their functional impacts have been more limited. Methods: We identified 145 genes from IBD-associated genomic loci having endogenous expression within the intestinal epithelial cell compartment. We evaluated the impact of lentiviral transfer of the open reading frame (ORF) of these IBD genes into the HT-29 intestinal epithelial cell line via transcriptomic analyses. Comparing the genes whose expression was modulated by each ORF, as well as the functions enriched within these gene lists, identified ORFs with shared impacts and their putative disease-relevant biological functions. Results: Analysis of the transcriptomic data for cell lines expressing the ORFs for known causal genes such as HNF4a, IFIH1 and SMAD3 identified functions consistent for what is known for these genes. These analyses also identified two major cluster of genes: Cluster 1 contained the known IBD causal genes IFIH1, SBNO2, NFKB1 and NOD2, as well as genes from other IBD loci (ZFP36L1, IRF1, GIGYF1, OTUD3, AIRE and PITX1), whereas Cluster 2 contained the known causal gene KSR1 and implicated DUSP16 from another IBD locus. Our analyses highlight how multiple IBD gene candidates impact on epithelial structure and function, including the protection of the mucosa from intestinal microbiota, and demonstrate that DUSP16, acts a regulator of MAPK activity and contributes to mucosal defense, in part via its regulation of the polymeric immunoglobulin receptor, involved in the protection of the intestinal mucosa from enteric microbiota. Conclusions: This functional screen, based on expressing IBD genes within an appropriate cellular context, in this instance intestinal epithelial cells, resulted in changes to the cell's transcriptome that are relevant to their endogenous biological function(s). This not only helped in identifying likely causal genes within genetic loci but also provided insight into their biological functions. Furthermore, this work has highlighted the central role of intestinal epithelial cells in IBD pathophysiology, providing a scientific rationale for a drug development strategy that targets epithelial functions in addition to the current therapies targeting immune functions.


2021 ◽  
Author(s):  
David W Morgens ◽  
Divya Nandakumar ◽  
Allison L Didychuk ◽  
Kevin J Yang ◽  
Britt Glaunsinger

While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel. Here, we used this approach to study the human oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV). We designed a sgRNA library containing all possible ~22,000 guides targeting the genome of KSHV - one cut site approximately every 8 base pairs - enabling the pooled screening of the entire genome. We used this tool to phenotype all possible Cas9-targeted viruses for transcription of KSHV late genes, which is required to produce structural components of the viral capsid. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we discovered a novel hit, ORF46 - and more specifically its DNA binding domain - is required for viral DNA replication. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.


Cell ◽  
2021 ◽  
Author(s):  
Dustin Griesemer ◽  
James R. Xue ◽  
Steven K. Reilly ◽  
Jacob C. Ulirsch ◽  
Kalki Kukreja ◽  
...  

2021 ◽  
Author(s):  
Jingru Fang ◽  
Colette Pietzsch ◽  
George Tsaprailis ◽  
Gogce Crynen ◽  
Kelvin Frank Cho ◽  
...  

Ebola virus (EBOV) critically depends on the viral polymerase to replicate and transcribe the viral RNA genome. To examine whether interactions between EBOV polymerase and cellular and viral factors affect distinct viral RNA synthesis events, we applied proximity proteomics to define the cellular interactome of EBOV polymerase, under conditions that recapitulate viral transcription and replication. We engineered EBOV polymerase tagged with the split-biotin ligase split-TurboID, which successfully biotinylated the proximal proteome while retaining polymerase activity. We further analyzed the interactomes in an siRNA-based, functional screen and uncovered 35 host factors, which, when depleted, affect EBOV infection. We validated one host factor, eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we show physically and functionally associates with EBOV polymerase to facilitate viral transcription termination. Our work demonstrates the utility of proximity proteomics to capture the functional host-interactome of the EBOV polymerase and to illuminate host-dependent regulations of viral RNA synthesis.


2021 ◽  
Vol 20 (5) ◽  
pp. 231-231
Author(s):  
Majed Albadi ◽  
MaryBeth Horodyski ◽  
Heather K. Vincent

Author(s):  
Antonio García-Moyano ◽  
Yuleima Diaz ◽  
José Navarro ◽  
David Almendral ◽  
Pål Puntervoll ◽  
...  

Abstract To support the bio-based industry in development of environment-friendly processes and products, an optimal toolbox of biocatalysts is key. Although functional screen of (meta)genomic libraries may potentially contribute to identifying new enzymes, the discovery of new enzymes meeting industry compliance demands is still challenging. This is particularly noticeable in the case of proteases, for which the reports of metagenome-derived proteases with industrial applicability are surprisingly limited. Indeed, proteolytic clones have been typically assessed by its sole activity on casein or skim milk and limited to mild screening conditions. Here, we demonstrate the use of six industry-relevant animal and plant by-products, namely bone, feather, blood meals, gelatin, gluten, and zein, as complementary substrates in functional screens and show the utility of temperature as a screening parameter to potentially discover new broad-substrate range and robust proteases for the biorefinery industry. By targeting 340,000 clones from two libraries of pooled isolates of mesophilic and thermophilic marine bacteria and two libraries of microbial communities inhabiting marine environments, we identified proteases in four of eleven selected clones that showed activity against all substrates herein tested after prolonged incubation at 55 °C. Following sequencing, in silico analysis and recombinant expression in Escherichia coli, one functional protease, 58% identical at sequence level to previously reported homologs, was found to readily hydrolyze highly insoluble zein at temperatures up to 50 °C and pH 9–11. It is derived from a bacterial group whose ability to degrade zein was unknown. This study reports a two-step screen resulting in identification of a new marine metagenome-derived protease with zein-hydrolytic properties at common biomass processing temperatures that could be useful for the modern biorefinery industry. Key points • A two-step multi-substrate strategy for discovery of robust proteases. • Feasible approach for shortening enzyme optimization to industrial demands. • A new temperature-tolerant protease efficiently hydrolyzes insoluble zein.


2021 ◽  
Vol 118 (11) ◽  
pp. e2012835118
Author(s):  
Kyle D. Pedro ◽  
Luis M. Agosto ◽  
Jared A. Sewell ◽  
Kimberly A. Eberenz ◽  
Xianbao He ◽  
...  

The molecular networks involved in the regulation of HIV replication, transcription, and latency remain incompletely defined. To expand our understanding of these networks, we performed an unbiased high-throughput yeast one-hybrid screen, which identified 42 human transcription factors and 85 total protein–DNA interactions with HIV-1 and HIV-2 long terminal repeats. We investigated a subset of these transcription factors for transcriptional activity in cell-based models of infection. KLF2 and KLF3 repressed HIV-1 and HIV-2 transcription in CD4+ T cells, whereas PLAGL1 activated transcription of HIV-2 through direct protein–DNA interactions. Using computational modeling with interacting proteins, we leveraged the results from our screen to identify putative pathways that define intrinsic transcriptional networks. Overall, we used a high-throughput functional screen, computational modeling, and biochemical assays to identify and confirm several candidate transcription factors and biochemical processes that influence HIV-1 and HIV-2 transcription and latency.


2021 ◽  
Author(s):  
Dustin Griesemer ◽  
James R. Xue ◽  
Steve K. Reilly ◽  
Jacob C. Ulirsch ◽  
Kalki Kukreja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document