ChemInform Abstract: REACTION OF TRANS-DIHYDRIDO-BIS(TRICYCLOHEXYLPHOSPHINE)PLATINUM WITH CARBON DISULFIDE. KINETIC STUDY OF THE INSERTION REACTION AND X-RAY STRUCTURE OF TRANS-HYDRIDODITHIOFORMATO-BIS(TRICYCLOHEXYLPHOSPHINE)PLATINUM

1976 ◽  
Vol 7 (32) ◽  
pp. no-no
Author(s):  
A. ALBINATI ◽  
A. MUSCO ◽  
G. CARTURAN ◽  
G. STRUKUL
1970 ◽  
Vol 35 (1) ◽  
pp. 279-281 ◽  
Author(s):  
Joseph E. Dunbar ◽  
Joan H. Rogers

1982 ◽  
Vol 1 (6) ◽  
pp. 778-783 ◽  
Author(s):  
Claudio Bianchini ◽  
Carlo A. Ghilardi ◽  
Andrea Meli ◽  
Stefano Midollini ◽  
Annabella Orlandini

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


2012 ◽  
Vol 442 ◽  
pp. 54-57
Author(s):  
Heng Li

The ion-exchanger Li0.6Zn1.2PO4of spinel type was prepared by a solid state reaction crystallization method. The extraction/insertion reaction with this material was investigated by X-ray, saturation capacity of exchange, and Kd measurement. The experimental results have proved that the acid-treated sample has a capacity of exchange 2.4mmol•g-1for Li+in the solution, The chemical analysis showed that the Li+extraction/insertion progressed mainly by ion-exchange mechanism and surface adsorption.


2012 ◽  
Vol 511 ◽  
pp. 105-108
Author(s):  
Jin He Jiang

Mg1.5Mn0.5Ti0.75O4 was prepared by a coprecipitation/thermal crystallization method. The extraction/insertion reaction with this material was investigation by X-ray, saturation capacity of exchange, and Kd measurement. The acid treatments of Mg1.5Mn0.5Ti0.75O4 caused Mg2+ extractions of more than 72%, while the dissolutions of Mn4+ and Ti4+ were less than 8.2%. The results showed that the Li+ extraction/insertion be progressed mainly by an ion-exchange mechanism. The acid treated samples had an ion exchange capacity of 10.6mmol/g for Li+.


Sign in / Sign up

Export Citation Format

Share Document