ChemInform Abstract: OPTICAL TO ELECTRICAL ENERGY CONVERSION- CADMIUM TELLURIDE-BASED PHOTOELECTROCHEMICAL CELLS EMPLOYING TELLURIDE DITELLURIDE ELECTROLYTES

1976 ◽  
Vol 7 (52) ◽  
pp. no-no
Author(s):  
A. B. ELLIS ◽  
S. W. KAISER ◽  
M. S. WRIGHTON
Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1141
Author(s):  
Ángel Encalada-Dávila ◽  
Mayken Espinoza-Andaluz ◽  
Julio Barzola-Monteses ◽  
Shian Li ◽  
Martin Andersson

A polymer electrolyte fuel cell (PEFC) is an electrochemical device that converts chemical energy into electrical energy and heat. The energy conversion is simple; however, the multiphysics phenomena involved in the energy conversion process must be analyzed in detail. The gas diffusion layer (GDL) provides a diffusion media for reactant gases and gives mechanical support to the fuel cell. It is a complex medium whose properties impact the fuel cell’s efficiency. Therefore, an in-depth analysis is required to improve its mechanical and physical properties. In the current study, several transport phenomena through three-dimensional digitally created GDLs have been analyzed. Once the porous microstructure is generated and the transport phenomena are mimicked, transport parameters related to the fluid flow and mass diffusion are computed. The GDLs are approximated to the carbon paper represented as a grouped package of carbon fibers. Several correlations, based on the fiber diameter, to predict their transport properties are proposed. The digitally created GDLs and the transport phenomena have been modeled using the open-source library named Open Pore Network Modeling (OpenPNM). The proposed correlations show a good fit with the obtained data with an R-square of approximately 0.98.


2012 ◽  
Vol 16 (suppl. 1) ◽  
pp. 159-171 ◽  
Author(s):  
Zoltan Corba ◽  
Vladimir Katic ◽  
Boris Dumnic ◽  
Dragan Milicevic

In this study, a simulation model of in-grid solar-to-electrical energy conversion system is presented. In this case, the in-grid solar-to-electrical energy conversion system is small photovoltaic power plant, which was constructed by the Center for Renewable Energy and Power Quality from Faculty of Technical Sciences (FTS). Equivalent circuit diagram of photovoltaic cell is described which was used to develop the simulation model of modules. Possible types and topologies of inverters are also described. The photovoltaic power plant is described briefly, because it is necessary to understand the simulation model. The result of simulation is an electricity annual production by the power plant. These results were compared with the real values, while its get a good overlap. The paper also presents the modern modeling methods developed at Faculty of Technical Sciences in the Laboratory for RES systems.


Sign in / Sign up

Export Citation Format

Share Document