scholarly journals In-grid solar-to-electrical energy conversion system modeling and testing

2012 ◽  
Vol 16 (suppl. 1) ◽  
pp. 159-171 ◽  
Author(s):  
Zoltan Corba ◽  
Vladimir Katic ◽  
Boris Dumnic ◽  
Dragan Milicevic

In this study, a simulation model of in-grid solar-to-electrical energy conversion system is presented. In this case, the in-grid solar-to-electrical energy conversion system is small photovoltaic power plant, which was constructed by the Center for Renewable Energy and Power Quality from Faculty of Technical Sciences (FTS). Equivalent circuit diagram of photovoltaic cell is described which was used to develop the simulation model of modules. Possible types and topologies of inverters are also described. The photovoltaic power plant is described briefly, because it is necessary to understand the simulation model. The result of simulation is an electricity annual production by the power plant. These results were compared with the real values, while its get a good overlap. The paper also presents the modern modeling methods developed at Faculty of Technical Sciences in the Laboratory for RES systems.

2013 ◽  
Vol 17 (2) ◽  
pp. 509-524 ◽  
Author(s):  
Axel Groniewsky

The basic concept in applying numerical optimization methods for power plants optimization problems is to combine a State of the art search algorithm with a powerful, power plant simulation program to optimize the energy conversion system from both economic and thermodynamic viewpoints. Improving the energy conversion system by optimizing the design and operation and studying interactions among plant components requires the investigation of a large number of possible design and operational alternatives. State of the art search algorithms can assist in the development of cost-effective power plant concepts. The aim of this paper is to present how nature-inspired swarm intelligence (especially PSO) can be applied in the field of power plant optimization and how to find solutions for the problems arising and also to apply exergoeconomic optimization technics for thermal power plants.


Author(s):  
B. Becker ◽  
H. H. Finckh ◽  
R. Meyer-Pittroff

In gas-cooled solar power plants the radiant energy of the sun is transferred to the cycle fluid in a cavity type solar receiver and converted into electric energy by means of a combined gas and steam turbine cycle incorporating a waste heat steam generator. The design and optimization of the energy conversion system in accordance with solar-specific considerations are described with particular regard to the gas turbine. In designing the energy conversion system several variants on the combined cycle with waste heat steam generator are investigated and special measures for the improvement of the cycle efficiency, such as the refinement of the steam process through the addition of pressure stages are introduced. It is demonstrated that the solar power plant meets the requirements both for straight solar and constant load operation with fossil fuel substitution. In order to establish the possibilities of attaining high part-load efficiencies in straight solar operation, two modes, variable and constant speed of the gas turbine, are compared with one another.


2019 ◽  
Vol 8 (3) ◽  
pp. 3214-3219 ◽  

Electrical energy demand increases day-by-day due to economic growth, technology development and increasing world population. The wind is one of the accessible renewable energy sources to generate electrical energy to meet the increased load demand. When the wind energy conversion system (WECS) is operating as isolated mode, it is more reliable, economical and easy to electrify rural areas. When the WECS is connected to load without controller the output three-phase voltages of the inverter have more transient and steady state errors and higher total harmonic distortion in the voltages and currents. This paper discusses various voltage controllers used in WECS in detail. The proposed WECS is simulated using MATLAB/Simulink with and without adaptive voltage controller for balanced and unbalanced non-linear load conditions. In each case the results have been analyzed and total harmonic distortion is evaluated..


Paper This paper gives conceptual idea and investigation of wind turbines interconnection for future wind energy conversion system. A grid connected direct driven PMSG based wind turbine system a variable speed is presented in this work. In the initial step, a simulation model of grid connected wind energy conversion system with cascade connected wind turbines is developed. In the later step, advanced controllers are developed for the above said simulation model. The generator side control is modified for cascade connected wind turbines topology and a common grid side inverter control is implemented. The whole simulation model along with their control strategies are implemented in SimPowersystem MATLAB software.


Author(s):  
S. C. Kaushik ◽  
Ravita Lamba ◽  
S. K. Tyagi

The sustainable development of clean and efficient electricity generation techniques accelerated the research for invention of alternative electricity generation methods. In this chapter, the conceptual analysis of newly invented photon-enhanced thermionic emission (PETE) energy conversion process has been presented. It is a promising option for harvesting solar energy in terms of capturing photon as well as thermal energy simultaneously and converting solar energy into electrical energy based on photovoltaic and thermionic emission processes of energy conversion. Thus, the PETE process utilizes photons for PV conversion and heat of radiation for thermionic emission process. The main objective of this chapter is to review and analyze the performance of PETE converters including thermal modeling, choice of materials, and parametric optimization. The appropriate choice of material requirements for cathode and anode of PETE converters is necessary for practical design of PETE converters. The PETE converter may be an efficient future option for electricity generation using solar energy.


Sign in / Sign up

Export Citation Format

Share Document