ChemInform Abstract: NUCLEOPHILIC ADDITION OF HYDROGEN CHLORIDE TO 1,2-ALKADIENEPHOSPHONIC ACID CHLORIDE

1980 ◽  
Vol 11 (36) ◽  
Author(s):  
T. S. MIKHAILOVA ◽  
V. M. IGNAT'EV ◽  
B. I. IONIN ◽  
A. A. PETROV
1972 ◽  
Vol 37 (23) ◽  
pp. 3577-3584 ◽  
Author(s):  
R. A. Abramovitch ◽  
Milorad M. Rogic ◽  
Sandra S. Singer ◽  
N. Venkateswaran

2015 ◽  
Vol 68 (11) ◽  
pp. 1657 ◽  
Author(s):  
Shinichiro Fuse ◽  
Yuma Otake ◽  
Yuto Mifune ◽  
Hiroshi Tanaka

An efficient, one-flow Arndt–Eistert synthesis was demonstrated. A sequence of acid chloride formation–nucleophilic acyl substitution–Wolff rearrangement–nucleophilic addition was performed in a microflow system without isolating any intermediates, which included a potentially explosive compound. The microflow system was made from simple, inexpensive, and readily available instruments and tubes. α-Aryl esters 2a and 2b were prepared in yields of 33 and 23 % (three steps) respectively.


1991 ◽  
Vol 56 (8) ◽  
pp. 1725-1731 ◽  
Author(s):  
Fridrich Szemes ◽  
Alfonz Rybár ◽  
Pavol Hrnčiar ◽  
Eva Solčániová ◽  
Ondrej Gattnár

Nucleophilic addition of alkyl-, cycloalkylamines, or saturated nitrogen-containing heterocycles to isolated or in situ generated 6-(2,3-epoxypropyl)-5,6,7,8-tetrahydrodibenz[c,e]azocine (III) afforded 6-(3-substituted amino-2-hydroxypropyl)-5,6,7,8-tetrahydrodibenz[c,e]azocines IV and their hydrochlorides. The starting 5,6,7,8-tetrahydrodibenz[c,e]azocine (I) reacted with 1-chloro-2,3-epoxypropane to yield 6-(3-chloro-2-hydroxypropyl)-5,6,7,8-tetrahydrodibenz[c,e]azocine (II), which, on treatment with sodium ethoxide or an excess of an amine eliminated hydrogen chloride to give the intermediate III.


2020 ◽  
Vol 27 ◽  
Author(s):  
Santosh Y. Khatavi ◽  
K. Kantharaju

Background: Agro-waste derived solvent media act as a greener process for the peptide bond formation using Nα - Fmoc-amino acid chloride and amino acid ester salt with in situ neutralization and coupling under biphasic condition. The Fmoc-amino acid chlorides are prepared by the reported procedure of freshly distilled SOCl2 with dry CH2Cl2. The protocol found many added advantages such as neutralization of amino acid ester salt and not required additional base for the neutralization, and directly coupling take place with Fmoc-amino acid chloride gave final product dipeptide ester in good to excellent yields. The protocol occurs with complete stereo chemical integrity of the configuration of substrates. Here, we revisited Schotten-Baumann condition, instead of using inorganic base. Objective: To develop green protocol for the synthesis of peptide bond using Fmoc-amino acid chloride with amino acid esters salt. Methods: The final product isolated is analyzed in several spectroscopic and analytical techniques such as FT-IR, 1H-, 13CNMR, Mass spectrometry and RP-HPLC to check stereo integrity and purity of the product. Conclusion: The present method developed greener using natural agro-waste (lemon fruit shell ash) derived solvent medium for the reaction and not required chemical entity.


2019 ◽  
Vol 26 (21) ◽  
pp. 4003-4028 ◽  
Author(s):  
Fangjun Huo ◽  
Yaqiong Zhang ◽  
Caixia Yin

In recent years, aldehyde-appended fluorescence probes have attracted increasing attention. Fluorescent biological imaging includes many modern applications for cell and tissue imaging in biomedical research. Meanwhile, the nucleophilic mechanism is a very simple and convenient procedure for the preparation of aldehyde-sensing probes. This tutorial review focuses on aldehyde-bearing chemosensors based on nucleophilic addition mechanism with biological applications.


1985 ◽  
Vol 50 (8) ◽  
pp. 1842-1851 ◽  
Author(s):  
Petr Švec

The course of chlorination of 2,4,6-trichlorophenol (I) in water and approximately 20% sulfuric and hydrochloric acids has been investigated. In all these media the reaction gives primarily 2,4,6,6-tetrachloro-2,4-cyclohexadienone (II) which is subsequently chlorinated under formation of polychlorinated alicyclic ketones or isomerized to give the more stable 2,4,6,6-tetrachloro-2,5-cyclohexadienone (III), the precursor of further arising chlorinated 1,4-benzoquinones. The ratio of the arising polychlorinated alicyclic ketones to chlorinated 1,4-benzoquinones is significantly influenced by concentration of hydrogen chloride in the reaction medium. On the basis of model experiments, the reaction mechanism of exhaustive chlorination of 2,4,6-trichlorophenol has been suggested.


1997 ◽  
Vol 62 (7) ◽  
pp. 1114-1127 ◽  
Author(s):  
Hubert Hřebabecký ◽  
Jan Balzarini ◽  
Antonín Holý

3'-Chloro and 3'-acetylsulfanyl derivatives of 1-(2-deoxy-4-C-hydroxymethyl-α-L-threo-pentofuranosyl)uracil were prepared by reaction of 2,3'-anhydro-1-{5'-O-benzoyl-4'-C-[(benzoyloxy)methyl]-2'-deoxy-α-L-erythro-pentofuranosyl}uracil (3) with hydrogen chloride and thioacetic acid, respectively. The reaction with hydrogen chloride gave a mixture of N-1 and N-3 substituted uracil derivatives 12 and 14. Reaction of 1-{3-O-benzoyl-4-C-[(benzoyloxy)methyl]-2-deoxy-α-L-threo-pentofuranosyl}uracil (7) with thionyl chloride and subsequent debenzoylation afforded 1-(4-C-chloromethyl-2-deoxy-β-D-erythro-pentofuranosyl)uracil (19). Nucleophilic substitution with lithium thioacetate, followed by deacylation, converted 1-{3-O-benzoyl-4-C-[(benzoyloxy)methyl]-2-deoxy-5-O-p-toluenesulfonyl-α-L-threo-pentofuranosyl}uracil (9) into 1-(2-deoxy-4-C-sulfanylmethyl-β-D-erythro-pentofuranosyl)uracil (21). The obtained thiols were oxidized with iodine or air to give 1,1'-[disulfandiylbis(2,3-dideoxy-4-hydroxymethyl-α-L-threo-pentofuranose-3,1-diyl]di(pyrimidine-2,4-(1H,3H)-dione) (17) and 1,1'-[disulfandiylbis(2,5-dideoxy-4-hydroxymethyl-α-L-threo-pentofuranose-5,1-diyl]di(pyrimidine-2,4(1H,3H)-dione) (22). Reaction of 1-{3-acetylsulfanyl-5-O-methanesulfonyl-4-C-[(benzoyloxy)methyl]-2,3-dideoxy-α-L-threo-pentofuranosyl)}uracil (24) with methanolic sodium methoxide afforded 1-(3,5-anhydro-2,3-dideoxy-4-C-hydroxymethyl-3-sulfanyl-α-L-threo-pentofuranosyl)uracil (25). The same reagent was used in the preparation of 1-(3,5-anhydro-2-deoxy-4-C-hydroxymethyl-α-L-threo-pentofuranosyl)uracil (26) from 1-{4-C-[(benzoyloxy)methyl]-2-deoxy-5-O-p-toluenesulfonyl-α-L-threo-pentofuranosyl}uracil (8). From the series of 4'-substituted 2'-deoxyuridine derivatives, synthesized in this study, solely the 4'-chloromethyl derivative 19 and the oxetane derivative 26 exhibited an appreciable activity against HIV-1 and HIV-2.


Sign in / Sign up

Export Citation Format

Share Document