ChemInform Abstract: HYDROGEN CYANIDE AND CHEMICAL EVOLUTION: THE POSSIBLE ROLE OF CYANO COMPOUNDS IN PREBIOTIC SYNTHESIS

1984 ◽  
Vol 15 (31) ◽  
Author(s):  
J. P. FERRIS ◽  
W. J. JUN. HAGAN
2020 ◽  
Vol 19 (5) ◽  
pp. 369-378 ◽  
Author(s):  
Saúl A. Villafañe-Barajas ◽  
María Colín-García ◽  
Alicia Negrón-Mendoza ◽  
Marta Ruiz-Bermejo

AbstractHydrogen cyanide (HCN) is considered a fundamental molecule in prebiotic chemistry experiments due to the fact that it could have an important role as raw material to form more complex molecules, as well as it could be an intermediate molecule in chemical reactions. However, the primitive scenarios in which this molecule might be available have been widely discussed. Hydrothermal systems have been considered as abiotic reactors and ideal niches for chemical evolution. Nevertheless, several experiments have shown that high temperatures and pressures could be adverse to the stability of organic molecules. Thus, it is necessary to carry out systematic experiments to study the synthesis, stability and fate of organic molecules in hydrothermal scenarios. In this work, we performed experiments focused on the stability and fate of HCN under a simple hydrothermal system scenario: the thermolysis of HCN at 100°C, at acidic and basic pH and in the presence of Mg-montmorillonite. Furthermore, we analysed the products from HCN thermolysis and highlighted the role of these chemical species as prebiotic molecules under a hydrothermal scenario.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 661
Author(s):  
Saúl A. Villafañe-Barajas ◽  
Marta Ruiz-Bermejo ◽  
Pedro Rayo-Pizarroso ◽  
Santos Gálvez-Martínez ◽  
Eva Mateo-Martí ◽  
...  

Hydrogen cyanide, HCN, is considered a fundamental molecule in chemical evolution. The named HCN polymers have been suggested as precursors of important bioorganics. Some novel researches have focused on the role of mineral surfaces in the hydrolysis and/or polymerization of cyanide species, but until now, their role has been unclear. Understanding the role of minerals in chemical evolution processes is crucial because minerals undoubtedly interacted with the organic molecules formed on the early Earth by different process. Therefore, we simulated the probable interactions between HCN and a serpentinite-hosted alkaline hydrothermal system. We studied the effect of serpentinite during the thermolysis of HCN at basic conditions (i.e., HCN 0.15 M, 50 h, 100 °C, pH > 10). The HCN-derived thermal polymer and supernatant formed after treatment were analyzed by several complementary analytical techniques. The results obtained suggest that: I) the mineral surfaces can act as mediators in the mechanisms of organic molecule production such as the polymerization of HCN; II) the thermal and physicochemical properties of the HCN polymer produced are affected by the presence of the mineral surface; and III) serpentinite seems to inhibit the formation of bioorganic molecules compared with the control (without mineral).


2021 ◽  
Vol 20 (2) ◽  
pp. 142-149
Author(s):  
Avnish Kumar Arora ◽  
Pankaj Kumar

AbstractStudies on the interaction of biomolecules with inorganic compounds, mainly mineral surfaces, are of great concern in identifying their role in chemical evolution and origins of life. Metal oxides are the major constituents of earth and earth-like planets. Hence, studies on the interaction of biomolecules with these minerals are the point of concern for the study of the emergence of life on different planets. Zirconium oxide is one of the metal oxides present in earth's crust as it is a part of several types of rocks found in sandy areas such as beaches and riverbeds, e.g. pebbles of baddeleyite. Different metal oxides have been studied for their role in chemical evolution but no studies have been reported about the role of zirconium oxide in chemical evolution and origins of life. Therefore, studies were carried out on the interaction of ribonucleic acid constituents, 5′-CMP (cytidine monophosphate), 5′-UMP (uridine monophosphate), 5′-GMP (guanosine monophosphate) and 5′-AMP (adenosine monophosphate), with zirconium oxide. Synthesized zirconium oxide particles were characterized by using vibrating sample magnetometer, X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy. Zirconia particles were in the nanometre range, from 14 to 27 nm. The interaction of zirconium oxide with ribonucleic acid constituents was performed in the concentration range of 5 × 10−5–300 × 10−5 M. Interaction studies were carried out in three mediums; acidic (pH 4.0), neutral (pH 7.0) and basic (pH 9.0). At neutral pH, maximum interaction was observed. The interaction of zirconium oxide with 5′-UMP was 49.45% and with 5′-CMP 67.98%, while with others it was in between. Interaction studies were Langmurian in nature. Xm and KL values were calculated. Infrared spectral studies of ribonucleotides, metal oxide and ribonucleotide–metal oxide adducts were carried out to find out the interactive sites. It was observed that the nitrogen base and phosphate moiety of ribonucleotides interact with the positive charge surface of metal oxide. SEM was also carried out to study the adsorption. The results of the present study favour the important role of zirconium oxide in concentrating the organic molecules from their dilute aqueous solutions in primeval seas.


1986 ◽  
Vol 128 (1) ◽  
pp. 17-31 ◽  
Author(s):  
J. M. Greenberg
Keyword(s):  

2005 ◽  
Vol 34 (8) ◽  
pp. 691 ◽  
Author(s):  
Enrique Maciá
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document