ChemInform Abstract: A QUANTITATIVE ANALYSIS OF THE EFFECT OF HEXADECYLTRIMETHYLAMMONIUM BROMIDE MICELLES ON THE RATE OF ALKALINE HYDROLYSIS OF BENZYLPENICILLIN

1985 ◽  
Vol 16 (43) ◽  
Author(s):  
H. CHAIMOVICH ◽  
V. R. CORREIA ◽  
P. S. ARAUJO ◽  
R. M. V. ALEIXO ◽  
I. M. CUCCOVIA
1993 ◽  
Vol 58 (12) ◽  
pp. 2891-2895 ◽  
Author(s):  
Jiří Kulič ◽  
Jiří Sussenbek ◽  
Aleš Ptáček

Alkaline hydrolysis if the phenyl acetates CH3COOC6H4X (X = 4-NO2, 3-NO2, 3-Cl, H, 4-CH3, 3-CH3, and 4-OCH3) in the presence of hexadecyltris(2-hydroxyethyl)ammonium chloride, bis(2-hydroxyethyl)hexadecyl(methyl)ammonium bromide, and hexadecyltrimethylammonium bromide has been studied. Comparison of the rates of the hydrolysis for the above tenzides showed that the most efficient catalyst is the hexadecyltris(2-hydroxyethyl)ammonium chloride. In all cases, the rate data correlated well with structure effects by the Hammett equation.


1994 ◽  
Vol 59 (5) ◽  
pp. 1137-1144 ◽  
Author(s):  
Aleš Ptáček ◽  
Jiří Kulič

The hydrolysis of diphenyl (4-nitrophenyl) phosphate catalyzed by 2-iodosobenzoic and 3-iodoso-2-naphthoic acids has been studied at different pH values in the presence of hexadecyltrimethylammonium bromide as a micellar agent. It was found that 3-iodoso-2-naphthoic acid is better catalyst than 2-iodosobenzoic acid. At amounts of the acids higher than stoichiometric, the reaction is independent of pH in the 8.00 to 10.00 region while on using substoichiometric amounts, the reaction rate depends on OH- ion concentration only when the acid to diphenyl (4-nitrophenyl) phosphate molar ratio amounts to 12.5 : 1 for 2-iodosobenzoic acid and 6.25 : 1 for 3-iodoso-2-naphthoic acid.


1994 ◽  
Vol 59 (6) ◽  
pp. 1392-1399 ◽  
Author(s):  
Jiří Kulič ◽  
Aleš Ptáček

Alkaline hydrolysis of 4-nitrophenyl acetate and of diphenyl (4-nitrophenyl) phosphate catalyzed by 2-iodosobenzenesulfonic and 2-iodoso-1-naphthalenesulfonic acids was studied in the presence of hexadecyltrimethylammonium bromide as the micellar agent. It was found that 2-iodosobenzenesulfonic acid is the better catalyst for the hydrolysis of phenyl acetate while 2-iodoso-1-naphthalenesulfonic acid is more efficient for the hydrolysis of the phosphate.


1993 ◽  
Vol 58 (8) ◽  
pp. 1798-1802 ◽  
Author(s):  
Jiří Kulič ◽  
Aleš Ptáček

2-Iodosobenzoic acid forming strong nucleophile in alkaline medium - 1-oxido-1,2-benziodoxol-3(1H)-one, was used as a catalyst of alkaline hydrolysis of substituted phenyl acetates (4-NO2, 3-NO2, 3-Cl, 4-Br, H, 4-CH3, 3-CH3, 4-OCH3, 3-OCH3) in the presence of hexadecyltrimethylammonium bromide as a micellar agent. It was found that the observed first-order rate constants kobs can be correlated by the Hammett equation: log kobs = (-3.29 ± 0.03) + (1.77 ± 0.001) σ.


1980 ◽  
Vol 45 (11) ◽  
pp. 2873-2882
Author(s):  
Vladislav Holba ◽  
Ján Benko

The kinetics of alkaline hydrolysis of succinic acid monomethyl and monopropyl esters were studied in mixed aqueous-nonaqueous media at various temperatures and ionic strengths. The results of measurements are discussed in terms of electrostatic and specific interactions between the reactants and other components of the reaction mixture. The kinetic parameters in the media under study are related to the influence of the cosolvent on the solvation sphere of the reactants.


2000 ◽  
Vol 65 (11) ◽  
pp. 1726-1736 ◽  
Author(s):  
Miroslav Ledvina ◽  
Radka Pavelová ◽  
Anna Rohlenová ◽  
Jan Ježek ◽  
David Šaman

Carba analogs of normuramic acid, i.e., 3-(benzyl 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-α-D-glucopyranosid-3-yl)propanoic acid derivatives (nitrile or esters) 3a-3c were prepared by addition of radicals generated from benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[(methylsulfanyl)thiocarbonyl]- (2a) or -3-O-(phenoxythiocarbonyl)-α-D-glucopyranoside (2b) with Bu3SnH to acrylonitrile or acryl esters. Alkaline hydrolysis of ethyl ester 3c afforded 3-(benzyl 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-α-D-glucopyranosid-3-yl)propanoic acid (5). Coupling of acid 5 with L-2-aminobutanoyl-D-isoglutamine benzyl ester trifluoroacetate and subsequent deprotection of the intermediate 6 furnished N-[3-(2-acetamido-2,3-dideoxy-α-D-glucopyranosid-3-yl)propanoyl]-L-2-aminobutanoyl-D-isoglutamine (7).


2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1557-1570 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Ilmar A. Koppel

The second-order rate constants k2 (dm3 mol-1 s-1) for the alkaline hydrolysis of substituted alkyl benzoates C6H5CO2R have been measured spectrophotometrically in aqueous 0.5 M Bu4NBr at 50 and 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH, CH2C6H5, CH2CH2Cl, CH2CH2OCH3, CH2CH3) and in aqueous 5.3 M NaClO4 at 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH). The dependence of the alkyl substituent effects on different solvent parameters was studied using the following equations:      ∆ log k = c0 + c1σI + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆EσI + c7∆YσI + c8∆PσI     ∆ log k = c0 + c1σ* + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆Eσ* + c7∆Yσ* + c8∆Pσ* .  ∆ log k = log kR - log kCH3. σI and σ* are the Taft inductive and polar substituent constants. E, Y and P are the solvent electrophilicity, polarity and polarizability parameters, respectively. In the data treatment ∆E = ES - EH2O , ∆Y = YS - YH2O , ∆P = PS - PH2O were used. The solvent electrophilicity, E, was found to be the main factor responsible for changes in alkyl substituent effects with medium. When σI constants were used, variation of the polar term of alkyl substituents with the solvent electrophilicity E was found to be similar to that observed earlier for meta and para substituents, but twice less when σ* constants were used. The steric term for alkyl substituents was approximately independent of the solvent parameters.


Sign in / Sign up

Export Citation Format

Share Document