ChemInform Abstract: Polymethine Dyes with Hydrocarbon Bridges. Anionic Dyes with an o-Phenylene Group in the Chromophore.

1986 ◽  
Vol 17 (4) ◽  
Author(s):  
YU. L. SLOMINSKII ◽  
S. V. POPOV ◽  
G. G. DYADYUSHA ◽  
A. D. KACHKOVSKII ◽  
A. I. TOLMACHEV
1985 ◽  
Vol 16 (44) ◽  
Author(s):  
YU. L. SLOMINSKII ◽  
S. V. POPOV ◽  
A. YA. IL'CHENKO ◽  
A. I. TOLMACHEV

2000 ◽  
Vol 2 (1) ◽  
pp. 17-21 ◽  
Author(s):  
A. S. Tatikolov ◽  
G. Ponterini ◽  
Zh. A. Krasnaya

Absorption, fluorescence, and fluorescence excitation spectra were studied for a number of cation-anionic and related anionic polymethine dyes in weakly polarand nonpolarsolvents, as well as in binary mixtures of solvents of different polarity. For some dyes, aggregation is observed in toluene or acetonitrile-toluene mixtures with low amounts of acetonitrile, which is revealed as appearance of new absorption bands and/or broadening of the initial bands of a monomeric dye. Solvent mixtures butyronitrilehexane with low butyronitrile content were found to greatly stimulate the formation of dye aggregates for most of the dyes studied. The absorption spectra of the aggregates are often blue-shifted with respect to the corresponding absorption spectra of parent monomeric dyes and/or represent broad continuums located both in the blue and red regions. For one of the cation-anionic dyes studied, which consists of3,3′-diethylthiamonomethinecyanine cation and trimethinebenzoxanine anion, fluorescent aggregates were observed; their broad fluorescence band is located in the long-wavelength region. For this dye, gradual transition from nonfluorescent aggregates to fluorescent ones and then to monomeric ion pairs and dissociated ions was observed in butyronitrile-hexane mixtures with growing butyronitrile content.


2000 ◽  
Vol 2 (1) ◽  
pp. 23-30 ◽  
Author(s):  
A. S. Tatikolov ◽  
Zh. A. Krasnaya ◽  
L. A. Shvedova ◽  
V. A. Kuzmin

Spectral and fluorescent properties of ketocyanine dyes (polyenic bis-ω,ω′-aminoketones) and cation-anionic polymethine dyes of various structures were studied. The symmetric ketocyanines were shown to have a long-wavelength absorption band bathochromically shifted in comparison with that of the asymmetric ketocyanines with the same total length of the polyenic chain. The nonlinear ketocyanines exhibit the additional short-wavelength band in their absorption spectra, which can be more intense than the longwavelength band. The absorption spectra of ion pairs of cation-anionic dyes with overlapping cation and anion bands contain a new intense short-wavelength band inactive in fluorescence excitation. These spectral peculiarities are explained on the basis of chromophore interaction model. It has also been shown that theT1levels of ketocyanine chromophores do not essentially interact with each other in a ketocyanine molecule in nonpolar solvents; in polar solvents this interaction becomes appreciable due to lowering the potential barrier for conjugation.


Author(s):  
B. I. Shapiro

In recent years, the class of polymethine (cyanine) dyes has attracted increasing attention of researchers in the field of nanotechnology due to the structural features of their chromophore system and their tendency to form polymolecular states – dye aggregates. The processes of the formation of aggregates with new optical and electronic properties in aqueous solutions were studied as exemplified by anionic thyatrimethinecyanine dyes. It was shown that the aggregates are formed by a “block” mechanism from dimers. The nanoarchitecture of the aggregates is determined by the type of the alkyl substituent in the meso position of the polymethine chain of the dye. The C2H5 group promotes the formation of long-wavelength J-aggregates with the “brickwork” packing of molecules. The CH3 group promotes the formation of short-wave H-units with the “stepladder” packing of molecules. The formation of spatial isomers – J- and H-aggregates from cis and trans conformations of dye molecules – was established. Inorganic and organic cations, which stabilize highly organized aggregate structures, have a significant effect on the formation of aggregated forms of anionic dyes. Thus, the work presents the author's ideas about a new scientific direction – the nanoarchitecture of aggregates of polymethine dyes.


2014 ◽  
Vol 59 (3) ◽  
pp. 326-330 ◽  
Author(s):  
S.Yu. Vyshnevskyy ◽  
◽  
I.M. Dmitruk ◽  
A.P. Naumenko ◽  
Yu.L. Bricks ◽  
...  

2019 ◽  
Author(s):  
Chi-Yun Lin ◽  
Matthew Romei ◽  
Luke Oltrogge ◽  
Irimpan Mathews ◽  
Steven Boxer

Green fluorescent protein (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all the observed strong correlations among photophysical properties; related subtopics are extensively discussed in Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue this model should also be generally applicable to both biological and non-biological polymethine dyes.<br>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Heinz Mustroph

Abstract Oxonol dyes are classified as anionic polymethine dyes, which cover a wide variety of structural types. The name of the class originates from the oxygen atoms which terminate each end of the polymethine chains that form the backbone of their structure. In technically useful dyes, these oxygen atoms tend to be substituents of heterocycles. The main technical application of water soluble oxonol dyes was in silver halide photography as filter dyes and antihalation dyes. Lipophilic oxonol dyes are used in bio-analysis and medical diagnostics to stain cells, bacteria or liposomes for example. Their main bioanalytical usage is in the determination of membrane potentials in eukaryotic cells and prokaryotic bacteria.


Sign in / Sign up

Export Citation Format

Share Document