ChemInform Abstract: Effect of Silicon Carbide Whisker and Titanium Carbide Particulate Additions on the Friction and Wear Behavior of Silicon Nitride.

ChemInform ◽  
2010 ◽  
Vol 22 (6) ◽  
pp. no-no
Author(s):  
C. R. BLANCHARD ◽  
R. A. PAGE

Wear ◽  
2007 ◽  
Vol 262 (5-6) ◽  
pp. 641-648 ◽  
Author(s):  
J. Dutta Majumdar ◽  
B. Ramesh Chandra ◽  
I. Manna




1988 ◽  
Vol 140 ◽  
Author(s):  
Thomas G. Tetreault ◽  
J.K. Hirvonen ◽  
G. Parker

AbstractThe method of Ion Beam Enhanced Deposition, (IBED), was used to produce hard films of i-BN, i-SixNy and i-TixNy. The friction, hardness, adhesion, and wear behavior of these nitride coatings were examined using a ball-ondisc friction/wear tester. The friction and wear results were sensitive to stoichiometry and the presence of impurities (e.g., hydrogen) in the film as well as the choice of ball material (400C stainless steel or silicon nitride).



2006 ◽  
Vol 113 ◽  
pp. 339-347 ◽  
Author(s):  
C.K. Kajdas

Ceramics, especially nitrides, oxides and carbides, offer advantages over conventional tribological mating elements. Such solids usually are very stable chemically. However, under friction conditions they become quite reactive. It is even possible to say that the friction and wear behavior of ceramics might be more sensitive to the environment than friction and wear behavior of metals. Considering the present trend towards the incorporation of these ceramics in tribological applications, the importance of a more comprehensive understanding of the ceramic surface physics and chemistry cannot be overestimated. The primary aim of this paper is to present some physicochemical factors that may influence the wear process of ceramics and account for some specific tribological findings related to lubrication of these materials from the view-point of a better understanding of their tribochemistry. Model of ceramic reaction with water, implying the effect of triboelectron emission process, leads to the generation of acidic and basic active sites. The model is mostly focused on silicon nitride tribochemistry. It accounts well for the formation of specific silicon compounds from silicon nitride lubricated with water and alcohols. The model is based on the emission process of low-energy electrons during friction with generation of positively charged sites (Si+) and free radicals (N●). Interaction of the emitted low-energy electrons with water or alcohol molecules (HOH, ROH) produces negative HO‾ or RO‾ ions, respectively and hydrogen radicals (H●). The described model provides a better understanding of silicon nitride tribochemistry than previous ones. The same is due to other ceramics.





1988 ◽  
Vol 128 ◽  
Author(s):  
Thomas G. Tetreault ◽  
J. K. Hirvonen ◽  
G. Parker ◽  
J. P. Hirvonen

ABSTRACTThe method of Ion Beam Enhanced Deposition, (IBED), was used to produce hard films of i-BN, i-SixNy and i-TixNy. The friction, hardness, adhesion, and wear behavior of these nitride coalings were examined using a ball-ondisc Friction/wear tester. The friction and wear results were sensitive to stoichiometry and the presence of impurities (e.g., hydrogen) in the film as well as the choice of ball material (400C stainless steel or silicon nitride).





Sign in / Sign up

Export Citation Format

Share Document