ChemInform Abstract: Microbiological Transformations. Part 32. Use of Epoxide Hydrolase Mediated Biohydrolysis as a Way to Enantiopure Epoxides and Vicinal Diols: Application to Substituted Styrene Oxide Derivatives.

ChemInform ◽  
2010 ◽  
Vol 27 (29) ◽  
pp. no-no
Author(s):  
S. PEDRAGOSA-MOREAU ◽  
A. ARCHELAS ◽  
R. FURSTOSS
Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 367
Author(s):  
Jin ◽  
Li ◽  
Zhang ◽  
Lin ◽  
Yang ◽  
...  

Enantiopure epoxides are versatile synthetic intermediates for producing optically active pharmaceuticals. In an effort to provide more options for the preparation of enantiopure epoxides, a variant of the epoxide hydrolase (vEH-Am) gene from a marine microorganism Agromyces mediolanus was synthesized and expressed in Escherichia coli. Recombiant vEH-Am displayed a molecular weight of 43 kDa and showed high stability with a half-life of 51.1 h at 30 °C. The purified vEH-Am exhibited high enantioselectivity towards styrene oxide (SO) and benzyl glycidyl ether (BGE). The vEH-Am preferentially converted (S)-SO, leaving (R)-SO with the enantiomeric excess (ee) >99%. However, (R)-BGE was preferentially hydrolyzed by vEH-Am, resulting in (S)-BGE with >99% ee. To investigate the origin of regioselectivity, the interactions between vEH-Am and enantiomers of SO and BGE were analyzed by molecular docking simulation. In addition, it was observed that the yields of (R)-SO and (S)-BGE decreased with the increase of substrate concentrations. The yield of (R)-SO was significantly increased by adding 2% (v/v) Tween-20 or intermittent supplementation of the substrate. To our knowledge, vEH-Am displayed the highest enantioselectivity for the kinetic resolution of racemic BGE among the known EHs, suggesting promising applications of vEH-Am in the preparation of optically active BGE.


2017 ◽  
Vol 15 (41) ◽  
pp. 8827-8835 ◽  
Author(s):  
Eila Serrano-Hervás ◽  
Marc Garcia-Borràs ◽  
Sílvia Osuna

Epoxide hydrolase (EH) enzymes catalyze the hydration of racemic epoxides to yield their corresponding vicinal diols. In this work, the Bacillus megaterium epoxide hydrolase (BmEH)-mediated hydrolysis of racemic styrene oxide (rac-SO) and its para-nitro styrene oxide (rac-p-NSO) derivative are computationally investigated using density functional theory (DFT).


2017 ◽  
Vol 12 (6) ◽  
pp. 527-546 ◽  
Author(s):  
Manisha Chownk ◽  
Aashish Sharma ◽  
Kashmir Singh ◽  
Jagdeep Kaur

2000 ◽  
Vol 28 (6) ◽  
pp. 855-856 ◽  
Author(s):  
J. Edqvist ◽  
I. Farbos

In Euphorbia lagascae the major fatty acid in triacylglycerol is the epoxidated fatty acid vernolic acid (cis- 12-epoxyoctadeca-cis-9-enoic acid). The enzymic reactions occurring during the catabolism of epoxidated fatty acids during germination are not known, but it seems likely that the degradation requires the activity of an epoxide hydrolase. Epoxide hydrolases are a group of functionally related enzymes that catalyse the cofactor-independent hydrolysis of epoxides to their corresponding vicinal diols by the addition of a water molecule. Here we report the cloning and characterization of an epoxide hydrolase gene from E. lagascae. The structure of the gene is unusual since it lacks introns. A detailed investigation of the transcription pattern of the epoxide hydrolase gene shows that the gene is induced during germination. We have used in situ hybridization to identify in which tissues the gene is expressed during germination. We speculate that this epoxide hydrolase enzyme is involved in the catabolism of epoxidated fatty acids during germination of E. lagascae seeds.


Sign in / Sign up

Export Citation Format

Share Document