ChemInform Abstract: Enantioselective Synthesis of Benzocyclic α,α-Dialkyl-amino Acids: New Insight into the Solvent-Dependent Stereoselectivity of the TMSCN Addition to Phenylglycinol Derived Imines.

ChemInform ◽  
2010 ◽  
Vol 32 (45) ◽  
pp. no-no
Author(s):  
Ralf Warmuth ◽  
Tamara E. Munsch ◽  
Robert A. Stalker ◽  
Bing Li ◽  
Alicia Beatty
2021 ◽  
Author(s):  
Eryn Nelson ◽  
Jeffrey S. S. K. Formen ◽  
Christian Wolf

The widespread occurrence and significance of chiral compounds does not only require new methods for their enantioselective synthesis but also efficient tools that allow rapid determination of the absolute configuration,...


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 563-574
Author(s):  
Laura K Palmer ◽  
Darren Wolfe ◽  
Jessica L Keeley ◽  
Ralph L Keil

Abstract Volatile anesthetics affect all cells and tissues tested, but their mechanisms and sites of action remain unknown. To gain insight into the cellular activities of anesthetics, we have isolated genes that, when overexpressed, render Saccharomyces cerevisiae resistant to the volatile anesthetic isoflurane. One of these genes, WAK3/TAT1, encodes a permease that transports amino acids including leucine and tryptophan, for which our wild-type strain is auxotrophic. This suggests that availability of amino acids may play a key role in anesthetic response. Multiple lines of evidence support this proposal: (i) Deletion or overexpression of permeases that transport leucine and/or tryptophan alters anesthetic response; (ii) prototrophic strains are anesthetic resistant; (iii) altered concentrations of leucine and tryptophan in the medium affect anesthetic response; and (iv) uptake of leucine and tryptophan is inhibited during anesthetic exposure. Not all amino acids are critical for this response since we find that overexpression of the lysine permease does not affect anesthetic sensitivity. These findings are consistent with models in which anesthetics have a physiologically important effect on availability of specific amino acids by altering function of their permeases. In addition, we show that there is a relationship between nutrient availability and ubiquitin metabolism in this response.


Author(s):  
Shan Wang ◽  
Hai Deng

Abstract The introduction of β-hydroxy-α-amino acids (βHAAs) into organic molecules has received considerable attention as these molecules have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of asymmetric synthesis of βHAAs, stereoselective synthesis to control the two chiral centres at Cα and Cβ positions is still challenging, with poor atomic economy and multi protection and deprotection steps. These syntheses are often operated under harsh conditions. Therefore, a biotransformation approach using biocatalysts is needed to selectively introduce these two chiral centres into structurally diverse molecules. Yet, there are few ways that enable one-step synthesis of βHAAs. One is to extend the substrate scope of the existing enzyme inventory. Threonine aldolases have been explored to produce βHAAs. However, the enzymes have poor controlled installation at Cβ position, often resulting in a mixture of diastereoisomers which are difficult to be separated. In this respect, l-threonine transaldolases (LTTAs) offer an excellent potential as the enzymes often provide controlled stereochemistry at Cα and Cβ positions. Another is to mine LTTA homologues and engineer the enzymes using directed evolution with the aim of finding engineered biocatalysts to accept broad substrates with enhanced conversion and stereoselectivity. Here, we review the development of LTTAs that incorporate various aldehyde acceptors to generate structurally diverse βHAAs and highlight areas for future developments. Key points • The general mechanism of the transaldolation reaction catalysed by LTTAs • Recent advances in LTTAs from different biosynthetic pathways • Applications of LTTAs as biocatalysts for production of βHAAs


ChemInform ◽  
2005 ◽  
Vol 36 (21) ◽  
Author(s):  
Susana Rojas-Lima ◽  
Omar Tellez-Zenteno ◽  
Heraclio Lopez-Ruiz ◽  
Lizeth Loubet-Gonzalez ◽  
Alejandro Alvarez-Hernandez

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yoshinori Takano ◽  
Yoshito Chikaraishi ◽  
Hiroyuki Imachi ◽  
Yosuke Miyairi ◽  
Nanako O. Ogawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document