ChemInform Abstract: Design and Synthesis of Porphyrins Bearing Rigid Hydrogen Bonding Motifs: Highly Versatile Building Blocks for Self-Assembly of Polymers and Discrete Arrays.

ChemInform ◽  
2010 ◽  
Vol 33 (11) ◽  
pp. no-no
Author(s):  
Xinxu Shi ◽  
Kathleen M. Barkigia ◽  
Jack Fajer ◽  
Charles Michael Drain
2020 ◽  
Author(s):  
Shuaiyuan Han ◽  
Sandrine Pensec ◽  
Cédric Lorthioir ◽  
Jacques Jestin ◽  
Jean-Michel Guigner ◽  
...  

Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. For the first time, the Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. It is therefore independent of the actual polymers used and works even for compatible polymers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.


Author(s):  
Ahyoung Kim ◽  
Lehan Yao ◽  
Falon Kalutantirige ◽  
Shan Zhou ◽  
Qian Chen

Biological building blocks (i.e., proteins) are encoded with the information of target structure into the chemical and morphological patches, guiding their assembly into the levels of functional structures that are crucial for living organisms. Learning from nature, researchers have been attracted to the artificial analogues, “patchy particles,” which have controlled geometries of patches that serve as directional bonding sites. However, unlike the abundant studies of micron-scale patchy particles, which demonstrated complex assembly structures and unique behaviors attributed to the patches, research on patchy nanoparticles (NPs) has remained challenging. In the present chapter, we discuss the recent understandings on patchy NP design and synthesis strategies, and physical principles of their assembly behaviors, which are the main factors to program patchy NP self-assembly into target structures that cannot be achieved by conventional non-patched NPs. We further summarize the self-assembly of patchy NPs under external fields, in simulation, and in kinetically controlled assembly pathways, to show the structural richness patchy NPs bring. The patchy NP assembly is novel by their structures as well as the multicomponent features, and thus exhibits unique optical, chemical, and mechanical properties, potentially aiding applications in catalysts, photonic crystals, and metamaterials as well as fundamental nanoscience.


2021 ◽  
Author(s):  
Junya Uchida ◽  
Masafumi Yoshio ◽  
Takashi Kato

We here report a new approach to develop self-healing shape memory supramolecular liquid-crystalline (LC) networks through self-assembly of molecular building blocks via combination of hydrogen bonding and coordination bonding. We...


2020 ◽  
Author(s):  
Shuaiyuan Han ◽  
Sandrine Pensec ◽  
Cédric Lorthioir ◽  
Jacques Jestin ◽  
Jean-Michel Guigner ◽  
...  

Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. For the first time, the Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. It is therefore independent of the actual polymers used and works even for compatible polymers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.


Author(s):  
Marius Ciobanu ◽  
Carmen-Simona Jordan

AbstractThe current study presents a new class of functional derivatives (1–3) consisting of a dicationic viologen (4,4’-bipyridinium unit) (V2+) capped by nucleobases thymine (NB1), adenine (NB2), thymine/adenine (NB1, NB2), and ion-paired with amphiphilic anion 3,4,5-tris(dodecyloxy)benzene sulfonate (DOBS−). The target of our work focuses on the design and synthesis of molecular building blocks in which three different functionalities are combined: chromophore (V2+ unit), molecular recognition (NB unit), and thermotropic liquid crystal (DOBS unit). The resulted materials exhibit liquid crystalline properties at ambient temperature with significant particularities-induced by nucleobases in the mesogen structure. Structure–properties relationship study focuses on providing knowledge about (1) how the thermotropic, redox properties, thermochromism, or ionic conductive properties are influenced by the presence of purinic or pyrimidinic nucleobases, and (2) how effective is their ability to self-assembly by hydrogen bonding in nonpolar solvents. The presence of nucleobases has been proved to have a substantial impact on electron transfer rate during the reduction of viologen moieties by intermolecular aggregation. Ionic conductivity and thermochromic properties of derivatives 1–3 were investigated and compared to a non-containing nucleobase analog methyl viologen with 3,4,5-tris(dodecyloxy)benzene sulfonate anion (MV) as reference. Graphical abstract


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuaiyuan Han ◽  
Sandrine Pensec ◽  
Dijwar Yilmaz ◽  
Cédric Lorthioir ◽  
Jacques Jestin ◽  
...  

Abstract Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities, and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. The Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. Therefore, even compatible polymers can be used to form these Janus objects. In fact, any polymers should qualify, as long as they do not prevent co-assembly of the stickers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.


2019 ◽  
Vol 10 ◽  
pp. 494-499
Author(s):  
Achintya Jana ◽  
Puneet Mishra ◽  
Neeladri Das

Exploring the surface self-assembly of small molecules that act as building blocks (tectons) for complex supramolecular structures is crucial for realizing surface-supported functional molecular devices. Here, we report on the synthesis and surface self-assembly of a new pyrazine-derived molecule with pyridine pendants. Ambient scanning tunneling microscopy investigation at the solution–solid interface reveals polymorphic self-assembly of these molecules on a HOPG substrate. Two different molecular packing structures with equal distribution are observed. Detailed analysis of the STM images emphasizes the crucial role of weak intermolecular hydrogen bonding, and molecule–substrate interactions in the formation of the observed polymorphs. Such weak hydrogen bonding interactions are highly desirable for the formation of modular supramolecular architectures since they can provide sufficiently robust molecular structures and also facilitate error correction.


MRS Bulletin ◽  
2007 ◽  
Vol 32 (7) ◽  
pp. 556-560 ◽  
Author(s):  
Michael Busby ◽  
Luisa De Cola ◽  
Gregg S. Kottas ◽  
Zoran Popović

The self-assembly of small molecules into large, functional nanostructures has led to the construction of supramolecular systems, both in solution and on solid substrates, with defined dimensions that display unique properties through collective interactions, much like natural systems. In this article, we show how one assembles photo- and electroluminescent molecules through coordination chemistry for the purpose of producing novel materials that can be used for displays and lighting applications. In a stepwise process, we discuss the design and synthesis of the components, their spectroscopic behavior, and finally the properties arising from the assembly. We then move from molecules to more complex systems such as zeolite L nano-objects that can be used as nanocontainers and functionalized in different ways. We show how it is possible to organize rods of micron length in a geometrically controlled manner in solution and on surfaces. The assemblies are built by coordinative bonds and are luminescent materials that can be constructed from fluorescent building blocks, with potential applications as optoelectronic materials, in analogy to their molecular counterparts.


Sign in / Sign up

Export Citation Format

Share Document