scholarly journals Viologen capped by nucleobase—building blocks for functional materials: synthesis and structure–properties relationship

Author(s):  
Marius Ciobanu ◽  
Carmen-Simona Jordan

AbstractThe current study presents a new class of functional derivatives (1–3) consisting of a dicationic viologen (4,4’-bipyridinium unit) (V2+) capped by nucleobases thymine (NB1), adenine (NB2), thymine/adenine (NB1, NB2), and ion-paired with amphiphilic anion 3,4,5-tris(dodecyloxy)benzene sulfonate (DOBS−). The target of our work focuses on the design and synthesis of molecular building blocks in which three different functionalities are combined: chromophore (V2+ unit), molecular recognition (NB unit), and thermotropic liquid crystal (DOBS unit). The resulted materials exhibit liquid crystalline properties at ambient temperature with significant particularities-induced by nucleobases in the mesogen structure. Structure–properties relationship study focuses on providing knowledge about (1) how the thermotropic, redox properties, thermochromism, or ionic conductive properties are influenced by the presence of purinic or pyrimidinic nucleobases, and (2) how effective is their ability to self-assembly by hydrogen bonding in nonpolar solvents. The presence of nucleobases has been proved to have a substantial impact on electron transfer rate during the reduction of viologen moieties by intermolecular aggregation. Ionic conductivity and thermochromic properties of derivatives 1–3 were investigated and compared to a non-containing nucleobase analog methyl viologen with 3,4,5-tris(dodecyloxy)benzene sulfonate anion (MV) as reference. Graphical abstract

2013 ◽  
Vol 66 (1) ◽  
pp. 9 ◽  
Author(s):  
Yi Liu ◽  
Zhan-Ting Li

The chemistry of imine bond formation from simple aldehyde and amine precursors is among the most powerful dynamic covalent chemistries employed for the construction of discrete molecular objects and extended molecular frameworks. The reversible nature of the C=N bond confers error-checking and proof-reading capabilities in the self-assembly process within a multi-component reaction system. This review highlights recent progress in the self-assembly of complex organic molecular architectures that are enabled by dynamic imine chemistry, including molecular containers with defined geometry and size, mechanically interlocked molecules, and extended frameworks and polymers, from building blocks with preprogrammed steric and electronic information. The functional aspects associated with the nanometer-scale features not only place these dynamically constructed nanostructures at the frontier of materials sciences, but also bring unprecedented opportunities for the discovery of new functional materials.


2020 ◽  
Author(s):  
Shuaiyuan Han ◽  
Sandrine Pensec ◽  
Cédric Lorthioir ◽  
Jacques Jestin ◽  
Jean-Michel Guigner ◽  
...  

Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. For the first time, the Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. It is therefore independent of the actual polymers used and works even for compatible polymers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Minwoo Yang ◽  
Woon Ju Song

AbstractProteins are versatile natural building blocks with highly complex and multifunctional architectures, and self-assembled protein structures have been created by the introduction of covalent, noncovalent, or metal-coordination bonding. Here, we report the robust, selective, and reversible metal coordination properties of unnatural chelating amino acids as the sufficient and dominant driving force for diverse protein self-assembly. Bipyridine-alanine is genetically incorporated into a D3 homohexamer. Depending on the position of the unnatural amino acid, 1-directional, crystalline and noncrystalline 2-directional, combinatory, and hierarchical architectures are effectively created upon the addition of metal ions. The length and shape of the structures is tunable by altering conditions related to thermodynamics and kinetics of metal-coordination and subsequent reactions. The crystalline 1-directional and 2-directional biomaterials retain their native enzymatic activities with increased thermal stability, suggesting that introducing chelating ligands provides a specific chemical basis to synthesize diverse protein-based functional materials while retaining their native structures and functions.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4307 ◽  
Author(s):  
Gabriele Magna ◽  
Donato Monti ◽  
Corrado Di Natale ◽  
Roberto Paolesse ◽  
Manuela Stefanelli

The interest in assembling porphyrin derivatives is widespread and is accounted by the impressive impact of these suprastructures of controlled size and shapes in many applications from nanomedicine and sensors to photocatalysis and optoelectronics. The massive use of porphyrin dyes as molecular building blocks of functional materials at different length scales relies on the interdependent pair properties, consisting of their chemical stability/synthetic versatility and their quite unique physicochemical properties. Remarkably, the driven spatial arrangement of these platforms in well-defined suprastructures can synergically amplify the already excellent properties of the individual monomers, improving conjugation and enlarging the intensity of the absorption range of visible light, or forming an internal electric field exploitable in light-harvesting and charge-and energy-transport processes. The countless potentialities offered by these systems means that self-assembly concepts and tools are constantly explored, as confirmed by the significant number of published articles related to porphyrin assemblies in the 2015–2019 period, which is the focus of this review.


Nanoscale ◽  
2017 ◽  
Vol 9 (48) ◽  
pp. 19191-19200 ◽  
Author(s):  
Jinglin Shen ◽  
Zhi Wang ◽  
Di Sun ◽  
Guokui Liu ◽  
Shiling Yuan ◽  
...  

Supramolecular self-assembly, based on non-covalent interactions, has been employed as an efficient approach to obtain various functional materials from nanometer-sized building blocks, in particular, [Ag6(mna)6]6−, mna = mercaptonicotinate (Ag6-NC).


2018 ◽  
Author(s):  
Weimin Xuan ◽  
Robert Pow ◽  
Qi Zheng, ◽  
Nancy Watfa ◽  
De-Liang Long ◽  
...  

Template synthesis is a powerful and useful approach to build a variety of functional materials and complicated supramolecular systems. Systematic study on how templates structurally evolve from basic building blocks and then affect the templated self-assembly is critical to understand the underlying mechanism and gain more guidance for designed assembly but remains challenging. Here we describe the templated self-assembly of a series of gigantic Mo Blue (MB) clusters 1-4 using L-ornithine as structure-directing agent. L-ornithine is essential for the formation of such kind of template⊂host assemblies by providing directional forces of hydrogen bonding and electrostatic interactions. Based on the structural relationship between encapsulated templates of {Mo8} (1), {Mo17} (2) and {Mo36} (4), a plausible pathway of the structural evolution of templates is proposed, thus giving more insight on the templated self-assembly of Mo Blue clusters.


Author(s):  
Ahyoung Kim ◽  
Lehan Yao ◽  
Falon Kalutantirige ◽  
Shan Zhou ◽  
Qian Chen

Biological building blocks (i.e., proteins) are encoded with the information of target structure into the chemical and morphological patches, guiding their assembly into the levels of functional structures that are crucial for living organisms. Learning from nature, researchers have been attracted to the artificial analogues, “patchy particles,” which have controlled geometries of patches that serve as directional bonding sites. However, unlike the abundant studies of micron-scale patchy particles, which demonstrated complex assembly structures and unique behaviors attributed to the patches, research on patchy nanoparticles (NPs) has remained challenging. In the present chapter, we discuss the recent understandings on patchy NP design and synthesis strategies, and physical principles of their assembly behaviors, which are the main factors to program patchy NP self-assembly into target structures that cannot be achieved by conventional non-patched NPs. We further summarize the self-assembly of patchy NPs under external fields, in simulation, and in kinetically controlled assembly pathways, to show the structural richness patchy NPs bring. The patchy NP assembly is novel by their structures as well as the multicomponent features, and thus exhibits unique optical, chemical, and mechanical properties, potentially aiding applications in catalysts, photonic crystals, and metamaterials as well as fundamental nanoscience.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 133 ◽  
Author(s):  
Adrian Domiński ◽  
Tomasz Konieczny ◽  
Piotr Kurcok

Supramolecular hydrogels that are based on inclusion complexes between α-cyclodextrin and (co)polymers have gained significant attention over the last decade. They are formed via dynamic noncovalent bonds, such as host–guest interactions and hydrogen bonds, between various building blocks. In contrast to typical chemical crosslinking (covalent linkages), supramolecular crosslinking is a type of physical interaction that is characterized by great flexibility and it can be used with ease to create a variety of “smart” hydrogels. Supramolecular hydrogels based on the self-assembly of polypseudorotaxanes formed by a polymer chain “guest” and α-cyclodextrin “host” are promising materials for a wide range of applications. α-cyclodextrin-based polypseudorotaxane hydrogels are an attractive platform for engineering novel functional materials due to their excellent biocompatibility, thixotropic nature, and reversible and stimuli-responsiveness properties. The aim of this review is to provide an overview of the current progress in the chemistry and methods of designing and creating α-cyclodextrin-based supramolecular polypseudorotaxane hydrogels. In the described systems, the guests are (co)polymer chains with various architectures or polymeric nanoparticles. The potential applications of such supramolecular hydrogels are also described.


Sign in / Sign up

Export Citation Format

Share Document