scholarly journals Asymmetric Diels—Alder Reactions of a New Enantiomerically Pure Sulfinylquinone: A Straightforward Access to Functionalized Wieland—Miescher Ketone Analogues with (R) Absolute Configuration.

ChemInform ◽  
2006 ◽  
Vol 37 (45) ◽  
Author(s):  
Don Antoine Lanfranchi ◽  
Gilles Hanquet
Author(s):  
Douglass F. Taber

The challenge of controlling the relative and absolute configuration of highly substituted cyclic ether-containing natural products continues to stimulate the development of new synthetic methods. Masahiro Murakami of Kyoto University showed (J. Org. Chem. 2009, 74, 6050) that Rh-mediated addition of an aryl boronic acid to 1 proceeded with high syn diastereocontrol, giving 3. This set the stage for Au-mediated rearrangement, leading to 4. We found (J. Org. Chem. 2009, 74, 5516) that asymmetric epoxidation of 5 followed by exposure to AD-mix could be used to prepare each of the four diastereomers of 6. We carried 6 on the isofuran 7, using a stereodivergent strategy that allowed the preparation of each of the 32 enantiomerically pure diastereomers of the natural product. Following up on the synthesis of brevisamide 16 described (Organic Highlights, November 16, 2009) by Kazuo Tachibana of the University of Tokyo, three groups reported alternative total syntheses. James S. Panek of Boston University prepared (Organic Lett. 2009, 11, 4390) the cyclic ether of 16 by addition of the enantiomerically pure silane 9 to 8. Craig W. Lindsley of Vanderbilt University used (Organic Lett. 2009, 11, 3950) SmI2 to effect the cyclization of 11 to 12. Arun K. Ghosh of Purdue University employed (Organic Lett. 2009, 11, 4164) an enantiomerically pure Cr catalyst to direct the absolute configuration in the hetero Diels-Alder addition of 14 to 13. Rubottom oxidation of the enol ether so formed led to the α-hydroxy ketone 15. Yuji Mori of Meijo University described (Organic Lett. 2009, 11, 4382) the total synthesis of the Gambierdiscus toxicus ladder ether gambierol 19. A key strategy, used repeatedly through the sequence, was the exo cyclization of an epoxy sulfone, illustrated by the conversion of 17 to 18. The epoxy sulfones were prepared by alkylating the anions derived from preformed epoxy sulfones such as 20.


Author(s):  
Douglass F. Taber

En route to sarcandralactone A 3, Scott A. Snyder of Scripps Florida effected (Angew. Chem. Int. Ed. 2015, 54, 7842) Diels–Alder cycloaddition of the activated enone 1 to the Danishefsky diene. On exposure to trifluoroacetic acid, the adduct was unraveled to the ene dione 2. Michael N. Paddon-Row of the University of New South Wales and Michael S. Sherburn of the Australian National University prepared (Nature Chem. 2015, 7, 82) the allene 4 in enantiomerically-pure form. Sequential cycloaddition with 5 followed by 6 gave an adduct that was decarbonylated to 7. Further cycloaddition with nitro­ethylene 8 led to the pseudopterosin (−)-G-J aglycone 9. The protein–protein interaction inhibitor JBIR-22 12 contains a quaternary α-amino acid pendant to a bicyclic core. Nicholas J. Westwood of the University of St. Andrews set (Angew. Chem. Int. Ed. 2015, 54, 4046) the absolute configuration of the core 11 by using an organocatalyst to activate the cyclization of 10. Metal catalysts can also be used to set the absolute configuration of a Diels–Alder cycloaddition. In the course of establishing the structure of the marine natural prod­uct muironolide A 15, Armen Zakarian of the University of California, Santa Barbara cyclized (J. Am. Chem. Soc. 2015, 137, 5907) the enol form of 13 preferentially to the diastereomer 14. Unactivated intramolecular Diels–Alder cycloadditions have been carried out with more and more challenging substrates. A key step in the synthesis (Chem. Asian. J. 2015, 10, 427) of (−)-platencin 18 by Martin G. Banwell, also of the Australian National University, was the cyclization of 16 to 17. In another illustration of the power of the unactivated intramolecular Diels–Alder reaction, Thomas J. Maimone of the University of California, Berkeley cyclized (Angew. Chem. Int. Ed. 2015, 54, 1223) the tetraene 19 to the tricycle 20. Allylic chlo­rination followed by reductive cyclization converted 20 to chatancin 21.


Author(s):  
Douglass F. Taber

Martin G. Banwell of the Australian National University prepared (Org. Lett. 2013, 15, 1934) the enantiomerically pure diol 1 by fermentation of the aromatic precursor. Diels-Alder addition of cyclopentenone 2 proceeded well at elevated pressure to give 3, the precursor to (+)-armillarivin 4. Karl Gademann of the University of Basel found (Chem. Eur. J. 2013, 19, 2589) that the Diels-Alder addition of 6 to 5 proceeded best without solvent and with Cu catalysis to give 7. Reduction under free radical conditions led to gelsemiol 8. Chun-Chen Liao of the National TsingHua University carried out (Org. Lett. 2013, 15, 1584) the diastereoselective addition of 10 to 9. A later oxy-Cope rearrangement established the octalin skeleton of (+)-frullanolide 12. D. Srinivasa Reddy of CSIR-National Chemical Laboratory devised (Org. Lett. 2013, 15, 1894) a strategy for the construction of the angularly substituted cis-fused aldehyde 15 based on Diels-Alder cycloaddition of 14 to the diene 13. Further transformation led to racemic peribysin-E 16. An effective enantioselective catalyst for dienophiles such as 14 has not yet been developed. Hiromi Uchiro of the Tokyo University of Science prepared (Tetrahedron Lett. 2012, 53, 5167) the bicyclic core of myceliothermophin A 19 by BF3•Et2O-promoted cyclization of the tetraene 17. The single ternary center of 17 mediated the formation of the three new stereogenic centers of 18, including the angular substitution. En route to caribenol A 22, Chuang-Chuang Li and Zhen Yang of the Peking University Shenzen Graduate School assembled (J. Org. Chem. 2013, 78, 5492) the triene 20 from two enantiomerically pure precursors. Inclusion of the radical inhibitor BHT sufficed to suppress competing polymerization, allowing clean cyclization to 21. Methylene blue has also been used (J. Am. Chem. Soc. 1980, 102, 5088) for this purpose.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6023
Author(s):  
Roberta Listro ◽  
Giacomo Rossino ◽  
Serena Della Volpe ◽  
Rita Stabile ◽  
Massimo Boiocchi ◽  
...  

During the past several years, the frequency of discovery of new molecular entities based on γ- or δ-lactam scaffolds has increased continuously. Most of them are characterized by the presence of at least one chiral center. Herein, we present the preparation, isolation and the absolute configuration assignment of enantiomeric 2-(4-bromophenyl)-1-isobutyl-6-oxopiperidin-3-carboxylic acid (trans-1). For the preparation of racemic trans-1, the Castagnoli-Cushman reaction was employed. (Semi)-preparative enantioselective HPLC allowed to obtain enantiomerically pure trans-1 whose absolute configuration was assigned by X-ray diffractometry. Compound (+)-(2R,3R)-1 represents a reference compound for the configurational study of structurally related lactams.


Sign in / Sign up

Export Citation Format

Share Document