ChemInform Abstract: Electrocyclization of cis-Dienals in Organic Synthesis: A New and Versatile Synthetic Method for the Preparation of Aryl- and Heteroaryl-Fused Coumarins.

ChemInform ◽  
2010 ◽  
Vol 41 (7) ◽  
Author(s):  
Yung-Son Hon ◽  
Tze-Wei Tseng ◽  
Chia-Yi Cheng
1978 ◽  
Vol 19 (34) ◽  
pp. 3103-3106 ◽  
Author(s):  
Kiyoshi Tanaka ◽  
Shuichi Shiraishi ◽  
Takeshi Nakai ◽  
Nobuo Ishikawa

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 449
Author(s):  
Emanuela Calcio Gaudino ◽  
Giorgio Grillo ◽  
Maela Manzoli ◽  
Silvia Tabasso ◽  
Simone Maccagnan ◽  
...  

In the past, the use of mechanochemical methods in organic synthesis was reported as somewhat of a curiosity. However, perceptions have changed over the last two decades, and this technology is now being appreciated as a greener and more efficient synthetic method. The qualified “offer” of ball mills that make use of different set-ups, materials, and dimensions has allowed this technology to mature. Nevertheless, the intrinsic batch nature of mechanochemical methods hinders industrial scale-ups. New studies have found, in reactive extrusion, a powerful technique with which to activate chemical reactions with mechanical forces in a continuous flow. This new environmentally friendly mechanochemical synthetic method may be able to miniaturize production plants with outstanding process intensifications by removing organic solvents and working in a flow mode. Compared to conventional processes, reactive extrusions display high simplicity, safety, and cleanliness, which can be exploited in a variety of applications. This paper presents perspective examples in the better-known areas of reactive extrusions, including oxidation reactions, polymer processing, and biomass conversion. This work should stimulate further developments, as it highlights the versatility of reactive extrusion and the huge potential of solid-phase flow chemistry.


Author(s):  
Douglass F. Taber

Organic synthesis is a vibrant and rapidly evolving field; we can now cyclize amines directly onto alkenes. Like its predecessors, this reference leads readers quickly to the field's more important recent developments. Two years of Douglass F. Taber's popular weekly online column, "Organic Chemistry Highlights", as featured on the organic-chemistry.org website, are consolidated here, with cumulative indices of all four volumes in this series. Important topics that are covered range from powerful new methods for C-C bond construction to asymmetric organocatalysis and direct C-H functionalization. This go-to reference focuses on the most important recent developments in organic synthesis, and includes a succinct analysis of the significance and applicability of each new synthetic method.


Author(s):  
Douglass Taber

Organic synthesis is a vibrant and rapidly evolving field; we can now cyclize amines directly onto alkenes. Like the first two books in this series, Organic Synthesis: State of the Art 2003-2005 and Organic Synthesis: State of the Art 2005-2007, this reference leads readers quickly to the most important recent developments. Two years of Taber's popular weekly online column, "Organic Chemistry Highlights", as featured on the organic-chemistry.org website, are consolidated here, with cumulative indices of all three volumes in this series. Important topics that are covered range from powerful new methods for C-C bond construction to asymmetric organocatalysis and direct C-H functionalization. This go-to reference focuses on the most important recent developments in organic synthesis, and includes a succinct analysis of the significance and applicability of each new synthetic method. It details and analyzes more than twenty complex total syntheses, including the Sammakia synthesis of the Macrolide RK-397, the Ley synthesis of Rapamycin, and the Kobayashi synthesis of (-)-Norzoanthamine.


2017 ◽  
Vol 4 (2) ◽  
pp. 87 ◽  
Author(s):  
V.M. Dembitsky ◽  
G.A. Tolstikov ◽  
M. Srebnik

<p>This review is devoted to the synthesis of a-carbonylalkyl- and β-hydroxy-alkyl boranes and their use in organic synthesis. a-Carbonyl-alkylboranes include several heteroatomic compounds, in particular, [1.2.3]-diazaborinines, uracyl boronic acids, and [1.2.3.4]-diaza-diboretes. The latter type has been obtained by the ketene aminoborations. The reactions of halogenboranes with diazoesters and sulfur ylides resulting in formation of a-carbonyl alkylborates containing diazofunction or ylide structural fragment are described. Amino and halogen boration of acetylenic acid esters was also used for the synthesis of a-carbonyl alkyl boranes. Reactions involving Cr-carbene complexes and acetylenic borone esters were presented for the synthesis of naphthoquinone boronic acids. The formation of amidoboranes by boration of dichloroacetanilides was remined. Boration of 4,8-dimethoxy-2-quinolone with trimethylborates leading to 2-quinolone-3-boronic acid was described. The common synthetic method to a-carbonyl alkyl boranes based on the hydroboration of acrylic acid derivatives was discussed. The results of enhydrazones hydroboration, leading to stable cyclic complexes have been mentioned. The interaction of a-bromoketones with trialkyl or dialkylboranes represents as a general synthetic method to a-carbonyl alkyl boranes. Synthetic approaches to â-hydroxy alkyl boranes are performed. The wide spread hydroboration of vinyl and allyl esters received a well-described attention. The hydroboration of cyclanone enol acetates, 3-keto- and 17-keto-steroids and cyclic allyl alcohol acetates was discussed. The results of aliphatic and alicyclic vinyl esters (including dihydrofuran derivatives) boralylation leading to β-hydroxy alkyl boranes have been envisaged. The synthesis of optically active β-hydroxy alkyl boranes using chiral borane hydrides was discussed. The heterocyclic boran dihydrides are obtained by the hydroboration of dihydropyranes, chromenes and flavenes. Borosilylation of allyl allenylic esters was also been envisaged. The synthetic scheme to optically active boranes and further optically active alcohols were presented. The problems of selectivity regularities in hydroboration reaction by intermolecular complex formations have been discussed.</p>


Author(s):  
Anna Wuttig ◽  
Dean Toste

Predictive control over the selectivity outcome of an organic synthetic method is an essential hallmark of reaction success. Electricity-driven synthesis offers a reemerging approach to facilitate the design of reaction sequences towards increased molecular complexity. In addition to the desirable sustainability features of electroorganic processes, the inherent interfacial nature of electrochemical systems present unique opportunities to tune reaction selectivity. To illustrate this feature, we outline examples of mechanism-guided interfacial control over CO2 electroreduction selectivity, a well-studied and instructive electrochemical process with multiple reduction products that are thermodynamically accessible. These studies reveal how controlled proton delivery to the electrode surface and substrate electroadsorption with the electrode dictate reaction selectivity. We describe and compare simple, yet salient, examples from the electroorganic literature, where we postulate that similar effects predominate the observed reactivity. This perspective highlights how the interface serves as a tunable dimension in electrochemical processes, delineating unique tools to study, manipulate, and achieve reaction selectivity in electricity-driven organic synthesis.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5373
Author(s):  
Aneta Kurpanik ◽  
Marek Matussek ◽  
Piotr Lodowski ◽  
Grażyna Szafraniec-Gorol ◽  
Michał Krompiec ◽  
...  

PAHs (polycyclic aromatics hydrocarbons), the compound group that contains perylene and its derivatives, including functionalized ones, have attracted a great deal of interest in many fields of science and modern technology. This review presents all of the research devoted to modifications of PAHs that are realized via the Diels–Alder (DA) cycloaddition of various dienophiles to the bay regions of PAHs, leading to the π-extension of the starting molecule. This type of annulative π-extension (APEX) strategy has emerged as a powerful and efficient synthetic method for the construction of polycyclic aromatic hydrocarbons and their functionalized derivatives, nanographenes, and π-extended fused heteroarenes. Then, [4 + 2] cycloadditions of ethylenic dienophiles, -N=N-, i.e., diazo-dienophiles and acetylenic dienophiles, are presented. This subject is discussed from the organic synthesis point of view but supported by theoretical calculations. The possible applications of DA cycloaddition to PAH bay regions in various science and technology areas, and the prospects for the development of this synthetic method, are also discussed.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 158
Author(s):  
M A.F. Abdul Manan ◽  
D B. Cordes ◽  
A M.Z. Slawin ◽  
D O’Hagan

Hypervalent iodine compounds exhibit attractive features of low cost, mild and selective reagents in organic synthesis. These reagents serve as environmentally benign alternatives to toxic heavy-metal based oxidants and expensive organometallic catalysts. The practical and simple synthesis of unsymmetrical diaryl iodonium tetrafluoroborate salts is described. This synthetic method has allowed the production of isoxazole tetrafluoroborate salts from readily available aryl boronic acids without an extra anion exchange step in acceptable yields of 45% and 50%. 


Sign in / Sign up

Export Citation Format

Share Document