complex formations
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 35)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
pp. 1-10
Author(s):  
Mohammad Javed Ansari ◽  
Gunawan Widjaja ◽  
Wanich Suksatan ◽  
Usama S. Altimari ◽  
Ahmed Kareem Abd ALhusain

A model of OC20 fullerene-oxide (FO) was investigated in this work for adsorbing the ammonia (NH3) substance by the hypothesis of formations of bimolecular complexes of the two substances. To affirm such hypothesis, the models of singular NH3 and FO were optimized to reach the minimized energy structures and all possibilities of their interactions configurations were examined. As a consequence, three NH3@FO bimolecular complex models were obtained for reaching the point of complex formations. Details of interactions indicated both direct and indirect contributions of the oxidized region of FO to interactions with both H and N atomic sites of NH3. In this regard, CPLX3 with two types of H. . . O and N. . . C interactions was seen to be at the highest strength of adsorption and complex formation in comparison with CPLX1 and CPLX2 models including only one interaction of each of H. . . O and N. . . C type, respectively. Moreover, the obtained electronic molecular orbital features revealed the sensor function of FO material versus the NH3 substance. As a consequence, the hypothesis of NH3@FO complexes formation was affirmed with two proposed functions of removal and detection for the investigated FO material. All results of this work were obtained by details through performing density functional theory (DFT) calculations.


2021 ◽  
pp. 1-9
Author(s):  
Xin Liu ◽  
Zahra Ahmadi

A model of heterogeneous carbon-boron-nitrogen (C-B-N) nanocage was investigated in this work for adsorbing H2O and H2S substances. To achieve this goal, quantum chemical calculations were performed to obtain optimized configurations of substances towards the surface of nanocage. The calculations yielded three possible configurations for relaxing each of substances towards the surface. Formation of acid-base interactions between vacant orbitals of boron atom and full orbitals of each of oxygen and sulfur atoms yielded the strongest complexes of substance-nanocage in comparison with orientation of substances through their hydrogen atoms towards the surface of nanocage. As a consequence, formations of interacting H2O@C-B-N and H2S@C-B-N complexes were achievable, in which mechanism of action showed different strengths for the obtained complexes. Variations of molecular orbital features and corresponding energy gap and Fermi energy for the models before/after adsorption could help for detection of adsorbed substance through a sensor function. And finally, such C-B-N nanocage showed benefit of providing activated surface for efficient adsorption of each of H2O and H2S substance with possibility of differential adsorption regarding the strength of complex formations.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1516
Author(s):  
Adel Ouannas ◽  
Iqbal M. Batiha ◽  
Stelios Bekiros ◽  
Jinping Liu ◽  
Hadi Jahanshahi ◽  
...  

The Selkov system, which is typically employed to model glycolysis phenomena, unveils some rich dynamics and some other complex formations in biochemical reactions. In the present work, the synchronization problem of the glycolysis reaction-diffusion model is handled and examined. In addition, a novel convenient control law is designed in a linear form and, on the other hand, the stability of the associated error system is demonstrated through utilizing a suitable Lyapunov function. To illustrate the applicability of the proposed schemes, several numerical simulations are performed in one- and two-spatial dimensions.


2021 ◽  
Vol 861 (6) ◽  
pp. 062054
Author(s):  
Huifeng Liu ◽  
Yue Xiao ◽  
Zhixiong Xu ◽  
Wanjun Li ◽  
Yong Wang ◽  
...  

Author(s):  
Ольга Борисовна Власова

Статья посвящена описанию словообразовательных и грамматических особенностей сложных рифмованных образований экспрессивной речи. В центре внимания автора имена существительные - производные и непроизводные, литературные и окказиональные - имеющие усилительное и определительное значение. Исследование проводится на материале современного русского языка. The article is devoted to the description of the word-forming and grammatical features of rhyming formations of expressive speech. The author focuses on nouns - derived and non-derived, literary and occasional - having an amplifying and determinative meaning. The research is based on the material of the modern Russian language.


Author(s):  
Rajesh Nimmakayala ◽  
Dharm Pal ◽  
Dhananjay Singh ◽  
Abhinesh Kumar Prajapati

Abstract In order to design an efficient extraction system for the separation of biochemically produced trans-aconitic acid (TAH) from fermentation broth; equilibrium and kinetics of reactive extraction of TAH from aqueous solutions was investigated using tri-n-octylamine (TOA) as an extractant and sunflower oil as a diluent. Through the equilibrium studies stoichiometry (acid, extractant) of complex formations was determined with the help of loading ratio. Formation of (1, 1), (2, 1), & (3, 1) stoichiometry complexes were observed having complexation constants values 179.73 kmol−1 m3, 9512.58 kmol−2 m6, and 614,407.02 kmol−3 m9, respectively. Kinetics experiments were performed in Lewis type stirred cell and results confirmed that reaction between TAH and TOA in sunflower oil fall in regime 1, i.e. slow reaction occurring in bulk organic phase. The overall order of reaction is pseudo first order with rate constant (K mn ) 1.78 × 10−5 (kmol m−3)−0.71 s−1 and physical mass transfer coefficient (K l ) 4.22 × 10−5 m s−1.


Author(s):  
Maria Lia Napoli ◽  
Monica Barbero ◽  
Claudio Scavia

AbstractA wide range of heterogeneous geological units composed of strong rock blocks enclosed in a bonded matrix of fine texture exists worldwide. Such geomaterials belong to geotechnically complex formations and are often referred to as bimrocks (block-in-matrix rocks) or bimsoils (block-in-matrix soils), as a function of their matrix characteristics and the interface strength between the matrix and blocks. Stability problems occurring in such complex geomaterials have been analysed almost exclusively by means of deterministic approaches and with the aim of investigating the effects of variable block contents on their mechanical behaviour. However, bimrocks and bimsoils can present very different internal block-in-matrix arrangements and properties according to their forming process and, consequently, significantly dissimilar mechanical behaviours. Therefore, the aim of this paper was to statistically investigate and compare the stability of theoretical slopes in the most widespread bimrock formations, i.e. sedimentary and tectonic melanges. These formations are characterised by substantial differences in their rock inclusion geometry. To this aim, a great number of 2D slope models were generated to enclose blocks with variable shapes, dimensions, arrangements, inclinations and contents. To obtain statistically based results, fifteen configurations were analysed for each block content and geometrical configuration considered. The results obtained indicate that block shapes and orientations significantly affect the stability of slopes in bimrocks only when the block contents are greater than 40%. Moreover, it is demonstrated that blocks inclined 0° to the horizontal provide the most tortuous and irregular failure surfaces and, consequently, the highest safety factors.


2021 ◽  
pp. 1-9
Author(s):  
Mahmoud Mirzaei ◽  
Amir Hossein Rasouli ◽  
Afsoon Saedi

Photosensitization analyses of models of (–HC = CH–)n assisted coronene-cytosine complexes assigned by Cor-n-Cyt; n varying by 0, 1, 2, and 3, were investigated in this work by performing density functional theory (DFT) calculations. The investigated models were optimized and chemical descriptors were evaluated. To achieve the goal of this work, energy levels of the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) were evaluated to reach the absorption energy requirement for innovating photosensitizer (PS) compounds. The models indicated that the complex formations could help the structures to participate in interactions easier than the singular models, in which HOMO-LUMO descriptors indicated lower required absorption energy for them to increase their safety for human health level. The required absorption energies of complexes with n = 0, 1, and 2, were in ultraviolet (UV) region whereas that of complex with n = 3 was moved to visible region. In this regard, the idea of new PS compounds innovation was examined here to introduce Cor-n-Cyt complexes for possible applications in photodynamic therapy (PDT).


2021 ◽  
Vol 11 (16) ◽  
pp. 7327
Author(s):  
Muhammad Umair Ahmad Khan ◽  
Sanghwa Kim ◽  
Ji Yeong Lee ◽  
Byung-Ju Yi

This paper presents a hybrid singulation strategy for fast object singulation in a cluttered environment. Recent techniques related to object singulation in clutter have employed various kinds of pushing techniques and in some cases have also used hitting techniques. However, these techniques have not addressed the issue related to the direction of pushing and hitting which is vital for fast object singulation. Finding the appropriate direction of hitting and pushing helps in singulating objects quickly in a cluttered environment. This paper proposes the desired direction for pushing and hitting, combined with a hybrid strategy, that results in fast object singulation in a cluttered environment. The number of times of pushing and hitting in terms of time is chosen as the measure of performance. We employ multiple circular disks as the test example and carry out diverse experiments to corroborate the usefulness of the proposed object singulation algorithm. This approach is able to singulate objects quickly in complex formations. In this paper, we have combined both pushing and hitting and also proposed the direction of hitting and pushing in order to singulate objects in clutter quickly.


Sign in / Sign up

Export Citation Format

Share Document