Organic Synthesis

Author(s):  
Douglass Taber

Organic synthesis is a vibrant and rapidly evolving field; we can now cyclize amines directly onto alkenes. Like the first two books in this series, Organic Synthesis: State of the Art 2003-2005 and Organic Synthesis: State of the Art 2005-2007, this reference leads readers quickly to the most important recent developments. Two years of Taber's popular weekly online column, "Organic Chemistry Highlights", as featured on the organic-chemistry.org website, are consolidated here, with cumulative indices of all three volumes in this series. Important topics that are covered range from powerful new methods for C-C bond construction to asymmetric organocatalysis and direct C-H functionalization. This go-to reference focuses on the most important recent developments in organic synthesis, and includes a succinct analysis of the significance and applicability of each new synthetic method. It details and analyzes more than twenty complex total syntheses, including the Sammakia synthesis of the Macrolide RK-397, the Ley synthesis of Rapamycin, and the Kobayashi synthesis of (-)-Norzoanthamine.

Author(s):  
Douglass F. Taber

Organic synthesis is a vibrant and rapidly evolving field; we can now cyclize amines directly onto alkenes. Like its predecessors, this reference leads readers quickly to the field's more important recent developments. Two years of Douglass F. Taber's popular weekly online column, "Organic Chemistry Highlights", as featured on the organic-chemistry.org website, are consolidated here, with cumulative indices of all four volumes in this series. Important topics that are covered range from powerful new methods for C-C bond construction to asymmetric organocatalysis and direct C-H functionalization. This go-to reference focuses on the most important recent developments in organic synthesis, and includes a succinct analysis of the significance and applicability of each new synthetic method.


Author(s):  
Douglass F. Taber ◽  
Tristan Lambert

Organic synthesis is a vibrant and rapidly evolving field; chemists can now cyclize alkenes directly onto enones. Like the first five books in this series, Organic Synthesis: State of the Art 2013-2015 will lead readers quickly to the most important recent developments in a research area. This series offers chemists a way to stay abreast of what's new and exciting in organic synthesis. The cumulative reaction/transformation index of 2013-2015 outlines all significant new organic transformations over the past twelve years. Future volumes will continue to come out every two years. The 2013-2015 volume features the best new methods in subspecialties such as C-O, C-N and C-C ring construction, catalytic asymmetric synthesis, selective C-H functionalization, and enantioselective epoxidation. This text consolidates two years of Douglass Taber's popular weekly online column, "Organic Chemistry Highlights" as featured on the organic-chemistry.org website and also features cumulative indices of all six volumes in this series, going back twelve years.


Author(s):  
Douglass F. Taber ◽  
Tristan Lambert

Organic Synthesis: State of the Art 2011-2013 is a convenient, concise reference that summarizes the most important current developments in organic synthesis, from functional group transformations to complex natural product synthesis. The fifth volume in the esteemed State of the Art series, the book compiles two years' worth of Douglass Taber's popular weekly column Organic Chemistry Highlights. The series is an invaluable resource, leading chemists quickly and easily to the most significant developments in the field. The book is logically divided into two sections: the first section focuses on specific topics in organic synthesis, such as C-N Ring Construction and Carbon-Carbon Bond Formation. Each topic is presented using the most significant publications within those areas of research. The journal references are included in the text. The second section focuses on benchmark total syntheses, with an analysis of the strategy for each, and discussions of pivotal transformations. Synthetic organic chemistry is a complex and rapidly growing field, with additional new journals appearing almost every year. Staying abreast of recent research is a daunting undertaking. This book is an ideal tool for both practicing chemists and students, offering a rich source of information and suggesting fruitful pathways for future investigation.


Synlett ◽  
2020 ◽  
Vol 31 (10) ◽  
pp. 925-932 ◽  
Author(s):  
Tingshun Zhu ◽  
Ke Xu ◽  
Ziyuan Wang

In recent decades, organocatalysis by N-heterocyclic carbenes (NHCs) has emerged as a versatile and powerful method in organic synthesis. As a result of the power of NHC organocatalysis to produce cyclic compounds, polysubstituted benzenes, which are among the most important cyclic compounds in organic chemistry, can be synthesized efficiently and selectively. This article briefly summarizes the history of NHC organocatalysis, including recent developments in benzene-formation methods, and highlights our recent work in atroposelective arene formation by carbene-catalyzed formal [4+2] cyclo­additions. We expect that more NHC-catalyzed methods for the synthesis of asymmetric arenes will be developed in the near future, providing shortcuts to syntheses of sophisticated chiral functional molecules with polysubstituted benzene nuclei.


Synlett ◽  
2020 ◽  
Vol 31 (05) ◽  
pp. 439-449 ◽  
Author(s):  
Alexey Yu. Sukhorukov

Umpolung strategies are of considerable interest to organic chemists because they provide alternative synthetic routes to those imposed by the natural polarity of classical synthons. Reverse-polarity reactions of aldehydes, α,β-unsaturated carbonyl compounds, and imines are deeply embedded in the methodology of organic synthesis. In recent years, umpolung of enols and enamines has received much attention as a novel strategy to access α-substituted ketones. Here, state-of-the-art approaches to umpolung of enamine reactivity are discussed, with a particular focus on recent developments in this field from the author’s research group.1 Introduction2 Approaches toward Umpolung of Enamines3 Umpolung of Enamines through Single-Electron Oxidation4 Azadienes as Synthetic Equivalents of Enamine Umpolung Synthons5 Enamines Possessing a Leaving Group at the Nitrogen Atom6 Enamines Possessing a Directing Group at the Nitrogen Atom7 Summary and Outlook


2015 ◽  
Vol 51 (83) ◽  
pp. 15222-15236 ◽  
Author(s):  
Davide Bonifazi ◽  
Francesco Fasano ◽  
M. Mercedes Lorenzo-Garcia ◽  
Davide Marinelli ◽  
Hamid Oubaha ◽  
...  

In this feature article we describe the past and recent developments in the organic synthesis and functionalisation of borazine, the isostructural inorganic analogue of benzene.


10.29007/493z ◽  
2018 ◽  
Author(s):  
Arman Masoumi ◽  
Megan Antoniazzi ◽  
Mikhail Soutchanski

Organic Synthesis is a computationally challenging practical problem concerned with constructing a target molecule from a set of initially available molecules via chemical reactions. This paper demonstrates how organic synthesis can be formulated as a planning problem in Artificial Intelligence, and how it can be explored using the state-of-the-art domain independent planners.To this end, we develop a methodology to represent chemical molecules and generic reactions in PDDL 2.2, a version of the standardized Planning Domain Definition Language popular in AI. In our model, derived predicates define common functional groups and chemical classes in chemistry, and actionscorrespond to generic chemical reactions. We develop a set of benchmark problems. Since PDDL is supported as an input language by many modern planners, our benchmark can be subsequently useful forempirical assessment of the performance of various state-of-the-art planners.


Author(s):  
Ewelina Korzeniowska

<p>The development of new methods for the synthesis of organophosphorus compounds is still an important part of organic chemistry due to the high demand for these compounds in organic synthesis as well as in asymmetric catalysis. Most of the methods for the synthesis of these compounds include the reactivity of the phosphorus atom, which depending on the structure might exhibit both electrophilic and nucleophilic properties. Herein, I will present the results concerning synthesis of diphenylphosphinic acid esters.</p>


2015 ◽  
Vol 32 (4) ◽  
pp. 605-632 ◽  
Author(s):  
Michail Tsakos ◽  
Eva S. Schaffert ◽  
Lise L. Clement ◽  
Nikolaj L. Villadsen ◽  
Thomas B. Poulsen

In this review we investigate the use of complex ester fragment couplings within natural product total syntheses. Using examples from the literature up to 2014 we illustrate the state-of-the-art as well as the challenges within this area of organic synthesis.


Sign in / Sign up

Export Citation Format

Share Document