ChemInform Abstract: Water-Soluble Palladium Nanoparticles: Click Synthesis and Applications as a Recyclable Catalyst in Suzuki Cross-Couplings in Aqueous Media.

ChemInform ◽  
2011 ◽  
Vol 42 (5) ◽  
pp. no-no
Author(s):  
Nereida Mejias ◽  
Roser Pleixats ◽  
Alexandr Shafir ◽  
Mercedes Medio-Simon ◽  
Gregorio Asensio
2010 ◽  
Vol 2010 (26) ◽  
pp. 5090-5099 ◽  
Author(s):  
Nereida Mejías ◽  
Roser Pleixats ◽  
Alexandr Shafir ◽  
Mercedes Medio-Simón ◽  
Gregorio Asensio

2014 ◽  
Vol 38 (11) ◽  
pp. 5429-5435 ◽  
Author(s):  
Hossein Naeimi ◽  
Vajihe Nejadshafiee

Cu(i)@phosphorated SiO2 as novel, eco-friendly, easy to prepare, recyclable catalyst for the synthesis of β-hydroxy-1,2,3-triazoles in water is reported.


2021 ◽  
pp. 106328
Author(s):  
Tiefeng Xu ◽  
Panting Lu ◽  
Sebastian Wohlrab ◽  
Wenxing Chen ◽  
Armin Springer ◽  
...  

2021 ◽  
Author(s):  
Aranee Pleng Teepakakorn ◽  
Makoto Ogawa

Water-induced self-healing materials were prepared by the hybridization of a water-soluble polymer, poly(vinyl alcohol), with a smectite clay by mixing in an aqueous media and subsequent casting. Without using chemical...


2013 ◽  
Vol 17 (06n07) ◽  
pp. 447-453 ◽  
Author(s):  
Hiroaki Isago ◽  
Harumi Fujita

Dissociation of imino proton(s) in the cavity of the macrocycle of a highly water-soluble, metal-free phthalocyanine ( H 2( H 4 tsppc ); where H 4 tsppc denotes tetrakis{(2′,6′-dimethyl-4′-sulfonic acid)phenoxy}phthalocyaninate) in ethanolic and aqueous solutions has spectrophotometrically been investigated. The spectral changes associated with reaction with NaOH have been found to involve one-proton transfer process in aqueous media while two-protons process in ethanolic media. The acid-dissociation constant of the first imino proton in water (in the presence of Triton X-100) has been determined to be 12.5 ± 0.2 (as pKa) at 25 °C. The doubly deprotonated species in EtOH has been easily converted to its corresponding cobalt(II) derivative by thermal reaction with anhydrous CoCl 2.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1890
Author(s):  
Xiang Lai ◽  
Xuan Zhang ◽  
Shukai Li ◽  
Jie Zhang ◽  
Weifeng Lin ◽  
...  

Water soluble organic molecular pollution endangers human life and health. It becomes necessary to develop highly stable noble metal nanoparticles without aggregation in solution to improve their catalytic performance in treating pollution. Polyethyleneimine (PEI)-based stable micelles have the potential to stabilize noble metal nanoparticles due to the positive charge of PEI. In this study, we synthesized the amphiphilic PEI-oleic acid molecule by acylation reaction. Amphiphilic PEI-oleic acid assembled into stable PEI-oleic acid micelles with a hydrodynamic diameter of about 196 nm and a zeta potential of about 34 mV. The PEI-oleic acid micelles-stabilized palladium nanoparticles (PO-PdNPsn) were prepared by the reduction of sodium tetrachloropalladate using NaBH4 and the palladium nanoparticles (PdNPs) were anchored in the hydrophilic layer of the micelles. The prepared PO-PdNPsn had a small size for PdNPs and good stability in solution. Noteworthily, PO-PdNPs150 had the highest catalytic activity in reducing 4-nitrophenol (4-NP) (Knor = 18.53 s−1mM−1) and oxidizing morin (Knor = 143.57 s−1M−1) in aqueous solution than other previous catalysts. The enhanced property was attributed to the improving the stability of PdNPs by PEI-oleic acid micelles. The method described in this report has great potential to prepare many kinds of stable noble metal nanoparticles for treating aqueous pollution.


Sign in / Sign up

Export Citation Format

Share Document