Production‐limited delayed detached eddy simulation of turbulent flow and heat transfer

2019 ◽  
Vol 97 (7) ◽  
pp. 2146-2156 ◽  
Author(s):  
Puxian Ding ◽  
Shuangfeng Wang ◽  
Kai Chen
2005 ◽  
Vol 127 (5) ◽  
pp. 888-896 ◽  
Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Detached Eddy Simulation (DES) of a hydrodynamic and thermally developed turbulent flow is presented for a stationary duct with square ribs aligned normal to the main flow direction. The rib height to channel hydraulic diameter (e∕Dh) is 0.1, the rib pitch to rib height (P∕e) is 10 and the calculations have been carried out for a bulk Reynolds number of 20,000. DES calculations are carried out on a 963 grid, a 643 grid, and a 483 grid to study the effect of grid resolution. Based on the agreement with earlier LES computations, the 643 grid is observed to be suitable for the DES computation. DES and RANS calculations carried out on the 643 grid are compared to LES calculations on 963∕1283 grids and experimental measurements. The flow and heat transfer characteristics for the DES cases compare well with the LES results and the experiments. The average friction and the augmentation ratios are consistent with experimental results, predicting values within 10% of the measured quantities, at a cost lower than the LES calculations. RANS fails to capture some key features of the flow.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1069-1091 ◽  
Author(s):  
Zhou Jiang ◽  
Zuoli Xiao ◽  
Yipeng Shi ◽  
Shiyi Chen

Purpose – The knowledge about the heat transfer and flow field in the ribbed internal passage is particularly important in industrial and engineering applications. The purpose of this paper is to identify and analyze the performance of the constrained large-eddy simulation (CLES) method in predicting the fully developed turbulent flow and heat transfer in a stationary periodic square duct with two-side ribbed walls. Design/methodology/approach – The rib height-to-duct hydraulic diameter ratio is 0.1 and the rib pitch-to-height ratio is 9. The bulk Reynolds number is set to 30,000, and the bulk Mach number of the flow is chosen as 0.1 in order to keep the flow almost incompressible. The CLES calculated results are thoroughly assessed in comparison with the detached-eddy simulation (DES) and traditional large-eddy simulation (LES) methods in the light of the experimentally measured data. Findings – It is manifested that the CLES approach can predict both aerodynamic and thermodynamic quantities more accurately than the DES and traditional LES methods. Originality/value – This is the first time for the CLES method to be applied to simulation of heat and fluid flow in this widely used geometry.


Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Numerical predictions of a hydrodynamic and thermally developed turbulent flow are presented for a stationary duct with square ribs aligned normal to the main flow direction. The rib height to channel hydraulic diameter (e/Dh) is 0.1, the rib pitch to rib height (P/e) is 10 and the calculations have been carried out for a bulk Reynolds number of 20,000. Detached Eddy Simulation (DES) has been used to compute the flowfield and the heat transfer. DES calculations are carried out on a 963 grid, a 643 grid and a 483 grid to study the effect of grid resolution. Based on the agreement with earlier LES computations and experimental data the 643 grid is observed to be suitable for the DES computation. DES and RANS calculations carried out on the 643 grid are compared to LES calculations on 963/1283 grids and experimental measurements. The flow and heat transfer characteristics for the DES cases compare well with the LES results and the experiments. The average friction and the augmentation ratios are consistent with experimental results, predicting values within 15% of the measured quantities, at a cost lower than the LES calculations. RANS fails to capture some key features of the flow.


Author(s):  
Elizaveta Ivanova ◽  
Gregory M. Laskowski

This paper presents the results of a numerical study on the predictive capabilities of Large Eddy Simulation (LES) and hybrid RANS/LES methods for heat transfer, mean velocity, and turbulence in a fundamental trailing edge slot. The geometry represents a landless slot (two-dimensional wall jet) with adjustable slot lip thickness. The reference experimental data taken from the publications of Kacker and Whitelaw [1] [2] [3] [4] contains the adiabatic wall effectiveness together with the velocity and the Reynolds-stress profiles for various blowing ratios and slot lip thicknesses. The simulations were conducted at three different lip thickness and several blowing ratio values. The comparison with the experimental data shows a general advantage of LES and hybrid RANS/LES methods against unsteady RANS. The predictive capability of the tested LES models (dynamic ksgs-equation [5] and WALE [6]) was comparable. The Improved Delayed Detached Eddy Simulation (IDDES) hybrid method [7] also shows satisfactory agreement with the experimental data. In addition to the described baseline investigations, the influence of the inlet turbulence boundary conditions and their implication for the initial mixing layer and heat transfer development were studied for both LES and IDDES.


Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

The capabilities of the Detached Eddy Simulation (DES) and the Unsteady Reynolds Averaged Navier-Stokes (URANS) versions of the 1988 κ-ω model in predicting the turbulent flow field and the heat transfer in a two-pass internal cooling duct with normal ribs is presented. The flow is dominated by the separation and reattachment of shear layers; unsteady vorticity induced secondary flows and strong streamline curvature. The techniques are evaluated in predicting the developing flow at the entrance to the duct and downstream of the 180° bend, fully-developed regime in the first pass, and in the 180° bend. Results of mean flow quantities, secondary flows, friction and heat transfer are compared to experiments and Large-Eddy Simulations (LES). DES predicts a slower flow development than LES, while URANS predicts it much earlier than LES computations and experiments. However it is observed that as fully developed conditions are established, the capability of the base model in predicting the flow and heat transfer is enhanced by switching to the DES formulation. DES accurately predicts the flow and heat transfer both in the fully-developed region as well as the 180° bend of the duct. URANS fails to predict the secondary flows in the fully-developed region of the duct and is clearly inferior to DES in the 180° bend.


Sign in / Sign up

Export Citation Format

Share Document