A Comparative Study of DES and URANS in a Two-Pass Internal Cooling Duct With Normal Ribs

Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

The capabilities of the Detached Eddy Simulation (DES) and the Unsteady Reynolds Averaged Navier-Stokes (URANS) versions of the 1988 κ-ω model in predicting the turbulent flow field and the heat transfer in a two-pass internal cooling duct with normal ribs is presented. The flow is dominated by the separation and reattachment of shear layers; unsteady vorticity induced secondary flows and strong streamline curvature. The techniques are evaluated in predicting the developing flow at the entrance to the duct and downstream of the 180° bend, fully-developed regime in the first pass, and in the 180° bend. Results of mean flow quantities, secondary flows, friction and heat transfer are compared to experiments and Large-Eddy Simulations (LES). DES predicts a slower flow development than LES, while URANS predicts it much earlier than LES computations and experiments. However it is observed that as fully developed conditions are established, the capability of the base model in predicting the flow and heat transfer is enhanced by switching to the DES formulation. DES accurately predicts the flow and heat transfer both in the fully-developed region as well as the 180° bend of the duct. URANS fails to predict the secondary flows in the fully-developed region of the duct and is clearly inferior to DES in the 180° bend.

2006 ◽  
Vol 128 (6) ◽  
pp. 1336-1345 ◽  
Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

The capabilities of the detached eddy simulation (DES) and the unsteady Reynolds averaged Navier-Stokes (URANS) versions of the 1988 k-ω model in predicting the turbulent flow field in a two-pass internal cooling duct with normal ribs is presented. The flow is dominated by the separation and reattachment of shear layers; unsteady vorticity induced secondary flows and strong streamline curvature. The techniques are evaluated in predicting the developing flow at the entrance to the duct and downstream of the 180deg bend, fully developed regime in the first pass, and in the 180deg bend. Results of mean flow quantities, secondary flows, and the average friction factor are compared to experiments and large-eddy simulations (LES). DES predicts a slower flow development than LES, whereas URANS predicts it much earlier than LES computations and experiments. However, it is observed that as fully developed conditions are established, the capability of the base model in predicting the flow is enhanced by the DES formulation. DES accurately predicts the flow both in the fully developed region as well as the 180deg bend of the duct. URANS fails to predict the secondary flows in the fully developed region of the duct and is clearly inferior to DES in the 180deg bend.


Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Numerical predictions of a hydrodynamic and thermally developed turbulent flow for a unit period of a stationary duct using Detached Eddy Simulation (DES) and Unsteady Reynolds Averaged Navier-Stokes (URANS) are presented. The domain under consideration is a square duct with 45° ribs on the top and bottom walls arranged in a staggered fashion. Computations are carried out for a bulk Re of 47,000. The rib height to channel hydraulic diameter (e/Dh) is 0.1 and the rib pitch to rib height (P/e) is 10. DES is applied on two grids 80 × 80 × 80 and 128 × 80 × 80 and the initial results are compared with the experimental results and LES computations. Based on this the 128 × 80 × 80 grid is chosen for the comprehensive study. DES and URANS computations are carried out on the grid. The rib geometry introduces a strong secondary flow along the rib. The presence of the secondary flow introduces a spanwise variation in the heat transfer. DES predicts flow features and heat transfer distribution which is consistent with the experimental observations and LES computations. The average friction and the augmentation ratios predicted by DES also concur with the earlier observations.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Evan A. Sewall ◽  
Danesh K. Tafti

The problem of accurately predicting the flow and heat transfer in the ribbed internal cooling duct of a rotating gas turbine blade is addressed with the use of large eddy simulations (LES). Four calculations of the developing flow region of a rotating duct with ribs on opposite walls are used to study changes in the buoyancy parameter at a constant rotation rate. The Reynolds number is 20,000, the rotation number is 0.3, and the buoyancy parameter is varied between 0.00, 0.25, 0.45, and 0.65. Previous experimental studies have noted that leading wall heat transfer augmentation decreases as the buoyancy parameter increases with low buoyancy, but heat transfer then increases with high buoyancy. However, no consistent physical explanation has been given in the literature. The LES results from this study show that the initial decrease in augmentation with buoyancy is a result of larger separated regions at the leading wall. However, as the separated region spans the full pitch between ribs with an increase in buoyancy parameter, it leads to increased turbulence and increased entrainment of mainstream fluid, which is redirected toward the leading wall by the presence of a rib. The impinging mainstream fluid results in heat transfer augmentation in the region immediately upstream of a rib. The results obtained from this study are in very good agreement with previous experimental results.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Sunil Patil ◽  
Danesh Tafti

Large eddy simulations of flow and heat transfer in a square ribbed duct with rib height to hydraulic diameter of 0.1 and 0.05 and rib pitch to rib height ratio of 10 and 20 are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation is used for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system in the near wall zonal treatment. A methodology to model the heat transfer in the zonal near wall layer in the large eddy simulations (LES) framework is presented. This general approach is explained for both Dirichlet and Neumann wall boundary conditions. Reynolds numbers of 20,000 and 60,000 are investigated. Predictions with wall modeled LES are compared with the hydrodynamic and heat transfer experimental data of (Rau et al. 1998, “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,”ASME J. Turbomach., 120, pp. 368–375). and (Han et al. 1986, “Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters,” NASA Report No. 4015), and wall resolved LES data of Tafti (Tafti, 2004, “Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades,” Int. J. Heat Fluid Flow 26, pp. 92–104). Friction factor, heat transfer coefficient, mean flow as well as turbulent statistics match available data closely with very good accuracy. Wall modeled LES at high Reynolds numbers as presented in this paper reduces the overall computational complexity by factors of 60–140 compared to resolved LES, without any significant loss in accuracy.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Sunil Lakshmipathy ◽  
Sharath S. Girimaji

The objective of this study is to evaluate the capability of the partially averaged Navier–Stokes (PANS) method in a moderately high Reynolds number (ReD 1.4×105) turbulent flow past a circular cylinder. PANS is a bridging closure model purported for use at any level of resolution ranging from Reynolds-averaged Navier–Stokes to direct numerical simulations. The closure model is sensitive to the length-scale cut-off via the ratios of unresolved-to-total kinetic energy (fk) and unresolved-to-total dissipation (fε). Several simulations are performed to study the effect of the cut-off length-scale on computed closure model results. The results from various resolutions are compared against experimental data, large eddy simulation, and detached eddy simulation solutions. The quantities examined include coefficient of drag (Cd), Strouhal number (St), and coefficient of pressure distribution (Cp) along with the mean flow statistics and flow structures. Based on the computed results for flow past circular cylinder presented in this paper and analytical attributes of the closure model, it is reasonable to conclude that the PANS bridging method is a theoretically sound and computationally viable variable resolution approach for practical flow computations.


Author(s):  
Samer Abdel-Wahab ◽  
Danesh K. Tafti

This paper presents results from large eddy simulation (LES) of fully developed flow in a 90° ribbed duct with rib pitch-to-height ratio P/e = 10 and a rib height to hydraulic diameter ratio e/Dh = 0.1. Three rotation numbers Ro = 0.18, 0.35 and 0.67 are studied at a nominal Reynolds number based on bulk velocity of 20,000. Mean flow and turbulent quantities, together with heat transfer and friction augmentation data are presented. Turbulence and heat transfer are augmented on the trailing surface and reduced at the leading surface. The heat transfer augmentation ratio on the trailing surface asymptotes to a value of 3.7 ± 5% and does not show any further increasing trend as the rotation number increases beyond 0.2. On the other hand, augmentation ratios on the leading surface keep decreasing with an increase in rotation number with values ranging from 1.7 at Ro = 0.18 to 1.2 at Ro = 0.67. Secondary flow cells augment the heat transfer coefficient on the smooth walls by 20% to 30% over a stationary duct. An increase in rotation number from 0.35 to 0.67 decreases the frictional losses from an augmentation ratio of 9.6 to 8.75 and is a consequence of decrease in form drag and wall shear. Overall augmentation compared with a non-rotating duct ranges from +15% to +20% for heat transfer, and +10% to +15% for friction over the range of rotation numbers studied. Comparison of heat transfer augmentation with previous experimental results in the literature shows very good agreement.


2005 ◽  
Vol 127 (5) ◽  
pp. 888-896 ◽  
Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Detached Eddy Simulation (DES) of a hydrodynamic and thermally developed turbulent flow is presented for a stationary duct with square ribs aligned normal to the main flow direction. The rib height to channel hydraulic diameter (e∕Dh) is 0.1, the rib pitch to rib height (P∕e) is 10 and the calculations have been carried out for a bulk Reynolds number of 20,000. DES calculations are carried out on a 963 grid, a 643 grid, and a 483 grid to study the effect of grid resolution. Based on the agreement with earlier LES computations, the 643 grid is observed to be suitable for the DES computation. DES and RANS calculations carried out on the 643 grid are compared to LES calculations on 963∕1283 grids and experimental measurements. The flow and heat transfer characteristics for the DES cases compare well with the LES results and the experiments. The average friction and the augmentation ratios are consistent with experimental results, predicting values within 10% of the measured quantities, at a cost lower than the LES calculations. RANS fails to capture some key features of the flow.


Sign in / Sign up

Export Citation Format

Share Document