The Investigations on Crustal Deformation in China under ITRF97 Plate Model using Data of “Crustal Movement Observation Network in China”

2002 ◽  
Vol 45 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Yang FU ◽  
Wen-Yao ZHU ◽  
Xiao-Ya WANG ◽  
Wu-Xing DUAN ◽  
Xian-Bing WU ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3353 ◽  
Author(s):  
Xiaoning Su ◽  
Guojie Meng ◽  
Haili Sun ◽  
Weiwei Wu

The Crustal Movement Observation Network of China (CMONOC) has begun receiving BeiDou Navigation Satellite System (BDS) observations since 2015, and accumulated more than 2.5 years of data. BDS observations has been widely applied in many fields, and long-term continuous data provide a new strategy for the study of crustal deformation in China. This paper focuses on the evaluation of BDS positioning performance and its potential application on crustal deformation in CMONOC. According to the comparative analysis on multipath delay (MPD) and signal to noise ratio (SNR) between BDS and GPS data, the data quality of BDS is at the same level with GPS measurements in COMONC. The spatial distribution of BDS positioning accuracy evaluated as the root mean square (RMS) of daily residual position time series on horizontal component is latitude-dependent, declining with the increasing of station latitude, while the vertical one is randomly distributed in China. The mean RMS of BDS position residual time series is 7 mm and 22 mm on horizontal and vertical components, respectively, and annual periodicity in position time series can be identified by BDS data. In view of the accuracy of BDS positioning, there are no systematic differences between GPS and BDS results. Based on time series analysis with data volume being 2.5 years, the noise characteristics of BDS daily position time series is time-correlated and corresponding noise is white plus flicker noise model, and the derived mean RMS of the BDS velocities is 1.2, 1.5, and 4.1 mm/year on north, east, and up components, respectively. The imperfect performance of BDS positioning relative to GPS is likely attributed to the relatively low accuracy of BDS ephemeris, and the sparse amount of MEO satellites distribution in the BDS constellation. It is expectable to study crustal deformation in CMONOC by BDS with the gradual maturity of its constellation and the accumulation of observations.


2018 ◽  
Vol 216 (3) ◽  
pp. 1560-1577 ◽  
Author(s):  
Wei Wang ◽  
Xuejun Qiao ◽  
Dijin Wang ◽  
Zhengsong Chen ◽  
Pengfei Yu ◽  
...  

2012 ◽  
Vol 30 (10) ◽  
pp. 1423-1433 ◽  
Author(s):  
Y. W. Wu ◽  
R. Y. Liu ◽  
B. C. Zhang ◽  
Z. S. Wu ◽  
J. S. Ping ◽  
...  

Abstract. Variations of the ionospheric Total Electron Content (TEC) over China are investigated using the TEC data obtained from China Crustal Movement Observation Network in the year 2004. The results show a single-peak occurred in post-noon for the diurnal variation and two peaks exit around two equinox points, respectively, for the seasonal variation. Overall, the values of TEC increased from the north to the south of China. There were small but clear longitudinal differences in both sides of the longitudes with zero magnetic declination. The intensity of the day-to-day variation of TEC was not a monotonic change along the latitudes. It was usually weaker in the middle of China than that in the north or south. Comparing with the maximum F-layer electron density (NmF2) derived from the ionosonde stations in China, it is found that the day-to-day variation of TEC was less significant than that of NmF2, and that the northern crest of the equatorial anomaly identified from the NmF2 data can reach Guangzhou-region. While, the TEC crest was hardly observed in the same location. This is probably caused by the tilt of topside ionosphere near the northern anomaly crest region at lower latitudes.


2015 ◽  
Vol 6 (2) ◽  
pp. 73-80 ◽  
Author(s):  
Yunbin Yuan ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Baocheng Zhang ◽  
Hui Li ◽  
...  

2019 ◽  
Vol 64 (2) ◽  
pp. 335-351 ◽  
Author(s):  
Shuguang Wu ◽  
Guigen Nie ◽  
Jingnan Liu ◽  
Changhu Xue ◽  
Jing Wang ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2481
Author(s):  
Jicang Wu ◽  
Xinyou Song ◽  
Weiwei Wu ◽  
Guojie Meng ◽  
Yingying Ren

In this paper, we propose a method for the analysis of tectonic movement and crustal deformation by using GNSS baseline length change rates or baseline linear strain rates. The method is applied to daily coordinate solutions of continuous GNSS stations of the Crustal Movement Observation Network of China (CMONOC). The results show that: (a) The baseline linear strain rates are uneven in space, which is prominent in the Tianshan, Sichuan-Yunnan, Qinghai-Tibet Plateau, and Yanjing areas, with a maximum value of 1 × 10−7 a−1, and about two orders smaller in the South China block, the Northeast block, and the inner area of the Tarim basin, where the average baseline linear strain rates are 1.471 × 10−9 a−1, 2.242 × 10−9 a−1, and 3.056 × 10−9 a−1, respectively; (b) Active crustal deformation and strong earthquakes in the Xinjiang area are mainly located in the north and south sides of the Tianshan block; the compression deformations both inside the Tarim block and in the southern Tianshan fault zone are all increasing from east to west, and the Tarim block is not a completely “rigid block”, with the shrinkage rate in the west part at about 1~2 mm/a; (c) The principal directions of crustal deformation in the Xinjiang, Tibet, and Sichuan-Yunnan regions are generally in the north—south compression and east—west extension, indicating that the collision and wedging between the Indian and Eurasian plates are still the main source of tectonic movements in mainland China.


Sign in / Sign up

Export Citation Format

Share Document