scholarly journals Analysis of Crustal Movement and Deformation in Mainland China Based on CMONOC Baseline Time Series

2021 ◽  
Vol 13 (13) ◽  
pp. 2481
Author(s):  
Jicang Wu ◽  
Xinyou Song ◽  
Weiwei Wu ◽  
Guojie Meng ◽  
Yingying Ren

In this paper, we propose a method for the analysis of tectonic movement and crustal deformation by using GNSS baseline length change rates or baseline linear strain rates. The method is applied to daily coordinate solutions of continuous GNSS stations of the Crustal Movement Observation Network of China (CMONOC). The results show that: (a) The baseline linear strain rates are uneven in space, which is prominent in the Tianshan, Sichuan-Yunnan, Qinghai-Tibet Plateau, and Yanjing areas, with a maximum value of 1 × 10−7 a−1, and about two orders smaller in the South China block, the Northeast block, and the inner area of the Tarim basin, where the average baseline linear strain rates are 1.471 × 10−9 a−1, 2.242 × 10−9 a−1, and 3.056 × 10−9 a−1, respectively; (b) Active crustal deformation and strong earthquakes in the Xinjiang area are mainly located in the north and south sides of the Tianshan block; the compression deformations both inside the Tarim block and in the southern Tianshan fault zone are all increasing from east to west, and the Tarim block is not a completely “rigid block”, with the shrinkage rate in the west part at about 1~2 mm/a; (c) The principal directions of crustal deformation in the Xinjiang, Tibet, and Sichuan-Yunnan regions are generally in the north—south compression and east—west extension, indicating that the collision and wedging between the Indian and Eurasian plates are still the main source of tectonic movements in mainland China.

2019 ◽  
Vol 14 (5) ◽  
pp. 744-754
Author(s):  
Rina Noguchi ◽  
Tatsuji Nishizawa ◽  
Wataru Kanda ◽  
Takahiro Ohkura ◽  
Akihiko Terada ◽  
...  

Crustal deformation is essential information for monitoring volcanic activity. In the summit area of the Kusatsu-Shirane Volcano (KSV), a dense Global Navigation Satellite System (GNSS) network has been operating near the recent volcanic center, Yugama crater. This network is sensitive to shallow depth activity, such as phreatic eruptions at the summit area, but is not applicable to deep magmatic activity, suggested to have been occurring for thousands of years by recent geological studies. Aiming to detect magmatic activity at a certain depth, we installed a new GNSS network near KSV. The observation sites were selected based on the crustal deformation pattern calculated for several intrusive events of the deep-seated magma. First, the GNSS sites for campaign observation were installed at eight locations in 2017. Then, four continuous sites commenced operation after a phreatic eruption at Mt. Motoshirane in January 2018. Here, we show the results of the first and second observation campaigns, operating in October 2017 and February 2018. Coordinate values are computed by precise point positioning with ambiguity resolution (PPP-AR) analysis and are used to calculate the displacement and the baseline length change during this period. The uncertainties of the calculated coordinate values are sufficiently small (less than 4.5 mm) except at some sites for which the data possibly include multipath errors due to trees and snow. Although any deformation associated with the 2018 eruption of Mt. Motoshirane is not detected, subsequent observations would contribute to monitoring long-term activity near KSV.


2009 ◽  
Vol 9 (3) ◽  
pp. 663-671 ◽  
Author(s):  
G. Akay ◽  
H. Ozener

Abstract. The western part of North Anatolian Fault (NAF) bifurcates around Mudurnu into two fault segments: northern and southern branch. The latter bifurcates again at west of Pamukova and creates middle strand. This study aimed to analyze crustal movement along the middle strand near Iznik which is considered as inactive fault. We focused on a microgeodetic network called General Command of Mapping-Istanbul Technical University (GCM-ITU) network around this segment. In order to obtain displacement values, five campaigns performed on the network which were used in the study. The displacements of the stations were estimated relative to the fixed stations located at the south of the network. The coordinates of the stations were calculated from the triangulation measurements realized in 1941 and 1963, trilateration measurements in 1981, and GPS campaigns in 2004 and 2007. Then, mean displacements of the network ranging between 7 mm/yr and 18 mm/yr were obtained for these years. In the second part of the study, the GPS data were re-processed by adding three stations from Marmara Continuous GPS Network (MAGNET). Details of MAGNET can be found Ergintav et al. (2002). Estimated displacements were ranging between 3 mm/yr and 13 mm/yr for 2004 and 2007. TUBI station of IGS network was taken as stable.


Author(s):  
Ilias Lazos ◽  
Sotirios Sboras ◽  
Christos Pikridas ◽  
Spyros Pavlides ◽  
Alexandros Chatzipetros

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0141442 ◽  
Author(s):  
Jiu Jimmy Jiao ◽  
Xiaotao Zhang ◽  
Yi Liu ◽  
Xingxing Kuang

Sign in / Sign up

Export Citation Format

Share Document