Spatiotemporal noise in GPS position time-series from Crustal Movement Observation Network of China

2018 ◽  
Vol 216 (3) ◽  
pp. 1560-1577 ◽  
Author(s):  
Wei Wang ◽  
Xuejun Qiao ◽  
Dijin Wang ◽  
Zhengsong Chen ◽  
Pengfei Yu ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3353 ◽  
Author(s):  
Xiaoning Su ◽  
Guojie Meng ◽  
Haili Sun ◽  
Weiwei Wu

The Crustal Movement Observation Network of China (CMONOC) has begun receiving BeiDou Navigation Satellite System (BDS) observations since 2015, and accumulated more than 2.5 years of data. BDS observations has been widely applied in many fields, and long-term continuous data provide a new strategy for the study of crustal deformation in China. This paper focuses on the evaluation of BDS positioning performance and its potential application on crustal deformation in CMONOC. According to the comparative analysis on multipath delay (MPD) and signal to noise ratio (SNR) between BDS and GPS data, the data quality of BDS is at the same level with GPS measurements in COMONC. The spatial distribution of BDS positioning accuracy evaluated as the root mean square (RMS) of daily residual position time series on horizontal component is latitude-dependent, declining with the increasing of station latitude, while the vertical one is randomly distributed in China. The mean RMS of BDS position residual time series is 7 mm and 22 mm on horizontal and vertical components, respectively, and annual periodicity in position time series can be identified by BDS data. In view of the accuracy of BDS positioning, there are no systematic differences between GPS and BDS results. Based on time series analysis with data volume being 2.5 years, the noise characteristics of BDS daily position time series is time-correlated and corresponding noise is white plus flicker noise model, and the derived mean RMS of the BDS velocities is 1.2, 1.5, and 4.1 mm/year on north, east, and up components, respectively. The imperfect performance of BDS positioning relative to GPS is likely attributed to the relatively low accuracy of BDS ephemeris, and the sparse amount of MEO satellites distribution in the BDS constellation. It is expectable to study crustal deformation in CMONOC by BDS with the gradual maturity of its constellation and the accumulation of observations.


2018 ◽  
Vol 10 (9) ◽  
pp. 1472 ◽  
Author(s):  
Peng Yuan ◽  
Weiping Jiang ◽  
Kaihua Wang ◽  
Nico Sneeuw

Analysis of Global Positioning System (GPS) position time series and its common mode components (CMC) is very important for the investigation of GPS technique error, the evaluation of environmental loading effects, and the estimation of a realistic and unbiased GPS velocity field for geodynamic applications. In this paper, we homogeneously processed the daily observations of 231 Crustal Movement Observation Network of China (CMONOC) Continuous GPS stations to obtain their position time series. Then, we filtered out the CMC and evaluated its effects on the periodic signals and noise for the CMONOC time series. Results show that, with CMC filtering, peaks in the stacked power spectra can be reduced at draconitic harmonics up to the 14th, supporting the point that the draconitic signal is spatially correlated. With the colored noise suppressed by CMC filtering, the velocity uncertainty estimates for both of the two subnetworks, CMONOC-I (≈16.5 years) and CMONOC-II (≈4.6 years), are reduced significantly. However, the CMONOC-II stations obtain greater reduction ratios in velocity uncertainty estimates with average values of 33%, 38%, and 54% for the north, east, and up components. These results indicate that CMC filtering can suppress the colored noise amplitudes and improve the precision of velocity estimates. Therefore, a unified, realistic, and three-dimensional CMONOC GPS velocity field estimated with the consideration of colored noise is given. Furthermore, contributions of environmental loading to the vertical CMC are also investigated and discussed. We find that the vertical CMC are reduced at 224 of the 231 CMONOC stations and 170 of them are with a root mean square (RMS) reduction ratio of CMC larger than 10%, confirming that environmental loading is one of the sources of CMC for the CMONOC height time series.


2020 ◽  
Vol 12 (6) ◽  
pp. 992 ◽  
Author(s):  
Kunpu Ji ◽  
Yunzhong Shen ◽  
Fengwei Wang

The daily position time series derived by Global Navigation Satellite System (GNSS) contain nonlinear signals which are suitably extracted by using wavelet analysis. Considering formal errors are also provided in daily GNSS solutions, a weighted wavelet analysis is proposed in this contribution where the weight factors are constructed via the formal errors. The proposed approach is applied to process the position time series of 27 permanent stations from the Crustal Movement Observation Network of China (CMONOC), compared to traditional wavelet analysis. The results show that the proposed approach can extract more exact signals than traditional wavelet analysis, with the average error reductions are 13.24%, 13.53% and 9.35% in north, east and up coordinate components, respectively. The results from 500 simulations indicate that the signals extracted by proposed approach are closer to true signals than the traditional wavelet analysis.


2002 ◽  
Vol 45 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Yang FU ◽  
Wen-Yao ZHU ◽  
Xiao-Ya WANG ◽  
Wu-Xing DUAN ◽  
Xian-Bing WU ◽  
...  

2012 ◽  
Vol 30 (10) ◽  
pp. 1423-1433 ◽  
Author(s):  
Y. W. Wu ◽  
R. Y. Liu ◽  
B. C. Zhang ◽  
Z. S. Wu ◽  
J. S. Ping ◽  
...  

Abstract. Variations of the ionospheric Total Electron Content (TEC) over China are investigated using the TEC data obtained from China Crustal Movement Observation Network in the year 2004. The results show a single-peak occurred in post-noon for the diurnal variation and two peaks exit around two equinox points, respectively, for the seasonal variation. Overall, the values of TEC increased from the north to the south of China. There were small but clear longitudinal differences in both sides of the longitudes with zero magnetic declination. The intensity of the day-to-day variation of TEC was not a monotonic change along the latitudes. It was usually weaker in the middle of China than that in the north or south. Comparing with the maximum F-layer electron density (NmF2) derived from the ionosonde stations in China, it is found that the day-to-day variation of TEC was less significant than that of NmF2, and that the northern crest of the equatorial anomaly identified from the NmF2 data can reach Guangzhou-region. While, the TEC crest was hardly observed in the same location. This is probably caused by the tilt of topside ionosphere near the northern anomaly crest region at lower latitudes.


2015 ◽  
Vol 6 (2) ◽  
pp. 73-80 ◽  
Author(s):  
Yunbin Yuan ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Baocheng Zhang ◽  
Hui Li ◽  
...  

2019 ◽  
Vol 64 (2) ◽  
pp. 335-351 ◽  
Author(s):  
Shuguang Wu ◽  
Guigen Nie ◽  
Jingnan Liu ◽  
Changhu Xue ◽  
Jing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document