Monoclonal antibodies in the management of ovarian cancer: A clinical perspective

Cancer ◽  
1993 ◽  
Vol 71 (S4) ◽  
pp. 1602-1612 ◽  
Author(s):  
Stephen C. Rubin
2013 ◽  
Vol 34 (4) ◽  
pp. 257-267 ◽  
Author(s):  
Alessandro Bressan ◽  
Francesca Bozzo ◽  
Carlo Alberto Maggi ◽  
Monica Binaschi

The human cancer antigen 125 (CA125) is over-expressed in epithelial ovarian cancer cells and it plays a role in the pathogenesis of ovarian cancer. This protein presents a repeat region containing up to sixty tandem repeat units. The anti-CA125 monoclonal antibodies have been previously classified into three groups: two major families, the OC125-like antibodies and M11-like antibodies, and a third group, the OV197-like antibodies. A model in which a single repeat unit contains all the epitopes for these antibodies has been also proposed, even if their exact position is still undetermined. In the present work, the affinities of the monoclonal antibodies, representative of the three families, have been investigated for different CA125-recombinant repeats through Western blot analysis. Different patterns of antibody recognition for the recombinant repeats show that CA125 epitopes are not uniformly distributed in the tandem repeat region of the protein. The minimal region for the recognition of these antibodies has been also individuated in the SEA domain through the subcloning of deleted sequences of the highly recognized repeat-25 (R-25), their expression as recombinant fragments inE. coliand Western blot analysis. Obtained data have been further confirmed by ELISA using the entire R-25 as coating antigen.


Author(s):  
Debra H. Josephs ◽  
Heather J. Bax ◽  
Giulia Pellizzari ◽  
James F. Spicer ◽  
Ana Montes ◽  
...  

Despite improvements over the past decade in the treatment of ovarian cancer, many patients are at risk of recurrent disease and emerging drug resistance. The increased selectivity and reduced toxicity of molecularly targeted anti-cancer agents renders them attractive for development in ovarian cancer, and monoclonal antibodies targeting ovarian cancer-specific tumor antigens represent the largest such group investigated in this clinical setting. This chapter describes examples of monoclonal antibodies clinically evaluated for efficacy in ovarian cancer. These agents recognize molecular targets expressed on tumors or within tumor microenvironments that may be essential for tumor cell survival and proliferation. Recently, antibodies targeting checkpoint molecules on immune cells have shown efficacy in modulating anti-tumor immunity, and applications in ovarian carcinomas are evaluated. The chapter focuses on therapeutic agents’ attributes on targeting key cancer growth and progression pathways, and propensity to engender effector functions by activating immune effector cells in tumors and the circulation.


1996 ◽  
Vol 11 (4) ◽  
pp. 211-215
Author(s):  
J.B. Oltrogge ◽  
B. Donnerstag ◽  
R.P. Baum ◽  
A.A. Noujaim ◽  
L. Träger

Two human monoclonal antibodies, HID-7E7 and ROB-6F2, were produced by EBV transformation of peripheral blood lymphocytes (PBL). PBL were obtained from a patient with ovarian cancer who had been exposed several times to a Tc-99m labeled murine monoclonal anti-CA 125 antibody (B43.13, Biomira, Edmonton) for immunoscintigraphy. The HID-7E7 and ROB-6F2 producing B-cells were cloned with a limiting dilution technique and have shown stable immunoglobulin secretion within a period of three years. The human monoclonal antibodies HID-7E7 and ROB-6F2 are of the IgG isotype, and bind with significant affinity to the murine monoclonal antibody B43.13, which was used for immunoscintigraphy. Binding affinity of ROB-6F2 to other murine antibodies could not be detected. Cross reactivity of HID-7E7 to a murine anti-CEA monoclonal antibody was observed. In order to verify the anti-idiotypic character of the generated human antibodies, the ability of HID-7E7 and ROB-6F2, respectively, to inhibit the formation of the CA125/B43.13 complex is demonstrated via an enzyme-linked immunosorbent assay. These human anti-idiotypic antibodies are possible candidates for immunotherapy of ovarian cancer in patients with a small tumor burden following surgery and/or chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document