scholarly journals Ipsilateral cortical connections of dorsal and ventral premotor areas in New World owl monkeys

2006 ◽  
Vol 495 (6) ◽  
pp. 691-708 ◽  
Author(s):  
Iwona Stepniewska ◽  
Todd M. Preuss ◽  
Jon H. Kaas
1990 ◽  
Vol 5 (2) ◽  
pp. 165-204 ◽  
Author(s):  
Leah A. Krubitzer ◽  
Jon H. Kass

AbstractCortical connections were investigated by restricting injections of WGA-HRP to different parts of the middle temporal visual area, MT, in squirrel monkeys, owl monkeys, marmosets, and galagos. Cortex was flattened and sectioned tangentially to facilitate an analysis of the areal patterns of connections. In the experimental cases, brain sections reacted for cytochrome oxidase (CO) or stained for myelin were used to delimit visual areas of occipital and temporal cortex and visuomotor areas of the frontal lobe. Major findings are as follows: (1) The architectonic analysis suggests that in addition to the commonly recognized visual fields, area 17 (V-I), area 18 (V-II), and MT, all three New World monkeys and prosimian galagos have visual areas DL, DI, DM, MST, and FST. (2) Measurements of the size of these areas indicate that about a third of the neocortex in these primates is occupied by the eight visual areas, but they occupy a somewhat larger proportion of neocortex in the diurnal marmosets and squirrel monkeys than the nocturnal owl monkeys and galagos. The diurnal primates also have proportionally more neocortex devoted to areas 17, 18, and DL and less to MT. These differences are compatible with the view that diurnal primates are more specialized for detailed object and color vision. (3) In all four primates, restricted locations in MT receive major inputs from short meandering rows of neurons in area 17 and several bands of neurons in area 18. (4) Major feedforward projections of MT are to two visual areas adjoining the rostral half of MT, areas MST and FST. Other ipsilateral connections are with DL, DI, and in some cases DM, parts of inferotemporal (IT) cortex, and posterior parietal cortex. (5) In squirrel monkeys, where injection sites varied from caudal to rostral MT, caudal parts of MT representing central vision connect more densely to DL and IT than other parts. Both DL and IT cortex emphasize central vision. (6) In the frontal lobe, MT has dense connections with the frontal ventral area (FV), but not with the frontal eye field (FEF). (7) Callosal connections of MT are most dense with matched locations in MT of the other hemisphere, rather than with the outer boundary of MT representing the vertical meridian. Targets of sparser callosal connections include FST, MST, and DL.The results support the conclusions that (1) prosimian primates and New World monkeys have at least ten visual and visuomotor areas in common, (2) the connections of MT are remarkably consistent across four species of primates, (3) the anatomical segregation of visual subsystems in areas 17 and 18 is common to all primates, (4) connections from the part of MT representing central vision with visual areas emphasizing central vision are more dense, and (5) MT and the associated fields MST and FST occupy proportionally more cortex in nocturnal than diurnal primates.


Neuroscience ◽  
2007 ◽  
Vol 147 (3) ◽  
pp. 727-745 ◽  
Author(s):  
I. Stepniewska ◽  
T.M. Preuss ◽  
J.H. Kaas
Keyword(s):  

2002 ◽  
Vol 99 (24) ◽  
pp. 15735-15742 ◽  
Author(s):  
D. C. Lyon ◽  
X. Xu ◽  
V. A. Casagrande ◽  
J. D. Stefansic ◽  
D. Shima ◽  
...  

2019 ◽  
Vol 116 (6) ◽  
pp. 2306-2311 ◽  
Author(s):  
Qi Zhu ◽  
Wim Vanduffel

The macaque dorsal occipital cortex is generally thought to contain an elongated third visual area, V3d, extending along most of the rostral border of area V2. In contrast, our submillimeter retinotopic fMRI maps (0.6-mm isotropic voxels, achieved by implanted phased-array receive coils) consistently show three sectors anterior to V2d. The dorsal (mirror image) sector complies with the traditional V3d definition, and the middle (nonmirror image) sector with V3A. The ventral (mirror image) sector bends away from V2d, as does the ventrolateral posterior area (VLP) in marmosets and the dorsolateral posterior area (DLP) in owl monkeys, and represents the entire contralateral hemifield as V3A does. Its population-receptive field size, however, suggests that this ventral sector is another area at the same hierarchical level as V4d. Hence, contrary to prevailing views, the retinotopic organization of cortex rostral to V2d differs substantially from widely accepted models. Instead, it is evolutionarily largely conserved in Old and New World monkeys given its surprisingly similar overall visuotopic organization.


Eye and Brain ◽  
2014 ◽  
pp. 1 ◽  
Author(s):  
Christina Cerkevich ◽  
Jon Kaas ◽  
Christine Collins

1997 ◽  
Vol 14 (6) ◽  
pp. 1043-1060 ◽  
Author(s):  
Iwona Stepniewska ◽  
Jon H. Kaas

AbstractArchitectonic subdivisions of the inferior pulvinar (PI) complex were delineated in New World owl and squirrel monkeys and Old World macaque monkeys. Brain sections were processed for Nissl substance, myelin, cytochrome oxidase (CO), acetylcholinesterase (AChE), calbindin-D28K (Cb), or with the monoclonal antibody Cat-301. In all three primates, we identified the posterior nucleus (PIp) and the medial nucleus (PIm) of previous reports, and divided the previously recognized central nucleus (PIc) into two subdivisions, medial (PIcm) and lateral (PIcl). Each nucleus had several features that allowed it to be readily distinguished. (1) PIp was dark in Cb, and moderately dark in AChE and CO preparations. (2) PIm was Cb light, and AChE and CO dark. (3) PIcm was Cb dark, and AChE and CO light. (4) PIcl was Cb moderate with a scattering of dark neurons, and moderately dark for AChE and CO. (5) In sections processed for Cat-301, PIm in macaque monkeys and PIcm and PIp in squirrel monkeys stained darkly, while little staining was apparent in owl monkeys. The results allowed subdivisions of the inferior pulvinar to be more clearly defined, homologized, and compared across taxa. All monkeys appear to have the same four subdivisions of the PI, although properties vary.


Sign in / Sign up

Export Citation Format

Share Document