scholarly journals Erratum: A Model Averaging/Selection Approach Improves the Predictive Performance of Model‐Informed Precision Dosing: Vancomycin as a Case Study

2020 ◽  
Vol 109 (1) ◽  
pp. 175-183
Author(s):  
David W. Uster ◽  
Sophie L. Stocker ◽  
Jane E. Carland ◽  
Jonathan Brett ◽  
Deborah J.E. Marriott ◽  
...  

Author(s):  
Jacqueline Peng ◽  
Mengge Zhao ◽  
James Havrilla ◽  
Cong Liu ◽  
Chunhua Weng ◽  
...  

Abstract Background Natural language processing (NLP) tools can facilitate the extraction of biomedical concepts from unstructured free texts, such as research articles or clinical notes. The NLP software tools CLAMP, cTAKES, and MetaMap are among the most widely used tools to extract biomedical concept entities. However, their performance in extracting disease-specific terminology from literature has not been compared extensively, especially for complex neuropsychiatric disorders with a diverse set of phenotypic and clinical manifestations. Methods We comparatively evaluated these NLP tools using autism spectrum disorder (ASD) as a case study. We collected 827 ASD-related terms based on previous literature as the benchmark list for performance evaluation. Then, we applied CLAMP, cTAKES, and MetaMap on 544 full-text articles and 20,408 abstracts from PubMed to extract ASD-related terms. We evaluated the predictive performance using precision, recall, and F1 score. Results We found that CLAMP has the best performance in terms of F1 score followed by cTAKES and then MetaMap. Our results show that CLAMP has much higher precision than cTAKES and MetaMap, while cTAKES and MetaMap have higher recall than CLAMP. Conclusion The analysis protocols used in this study can be applied to other neuropsychiatric or neurodevelopmental disorders that lack well-defined terminology sets to describe their phenotypic presentations.


2009 ◽  
Vol 26 (1) ◽  
pp. 30-55 ◽  
Author(s):  
Theo S. Eicher ◽  
Chris Papageorgiou ◽  
Adrian E. Raftery

2021 ◽  
Vol 72 ◽  
pp. 901-942
Author(s):  
Aliaksandr Hubin ◽  
Geir Storvik ◽  
Florian Frommlet

Regression models are used in a wide range of applications providing a powerful scientific tool for researchers from different fields. Linear, or simple parametric, models are often not sufficient to describe complex relationships between input variables and a response. Such relationships can be better described through  flexible approaches such as neural networks, but this results in less interpretable models and potential overfitting. Alternatively, specific parametric nonlinear functions can be used, but the specification of such functions is in general complicated. In this paper, we introduce a  flexible approach for the construction and selection of highly  flexible nonlinear parametric regression models. Nonlinear features are generated hierarchically, similarly to deep learning, but have additional  flexibility on the possible types of features to be considered. This  flexibility, combined with variable selection, allows us to find a small set of important features and thereby more interpretable models. Within the space of possible functions, a Bayesian approach, introducing priors for functions based on their complexity, is considered. A genetically modi ed mode jumping Markov chain Monte Carlo algorithm is adopted to perform Bayesian inference and estimate posterior probabilities for model averaging. In various applications, we illustrate how our approach is used to obtain meaningful nonlinear models. Additionally, we compare its predictive performance with several machine learning algorithms.  


Author(s):  
Ojo Samuel ◽  
Alimi Taofeek Ayodele ◽  
Amos Anna Solomon

Mathematical models have been very useful in reducing challenges encountered by researchers due to the inability of having solar radiation data or lack of instrumental sites at every point on the Earth.  This work aimed at investigating the prediction performance of Hargreaves-Samani’s model in estimating global solar radiation (GSR) out of the many other empirical models so far formulated for this purpose. This model basically uses maximum and minimum temperature data and basically used in mid-latitudes. The paper attempts to assess the predictive performance of Hargreaves-Samani’s model in the Savanna region using Yola as a case study. Estimated values of GSR from one month data adopted from the Meteorological station of the Department of Geography, Federal University of Technology, Yola, Nigeria was used for this purpose. Using this model shows a 95% index of agreement (IA) with the observed values; which suggests a good model performance and can also be used in estimating global solar radiation in the Savanna region particularly in areas with little or no such climatic data.


2019 ◽  
Vol 887 ◽  
pp. 401-407
Author(s):  
Samira Aien ◽  
Mahnameh Taheri ◽  
Sarin Pinich ◽  
Matthias Schuss ◽  
Ardeshir Mahdavi

In recent years, many researchers have focused on the energy efficiency and performance of existing buildings. In order to predict the hygrothermal performance and minimize the risk of moisture damage in retrofit cases, user-friendly moisture calculation tools have been developed. However, concerns have been raised as to how to increase the reliability of such tools. In this context, the present study uses simulation to investigate the retrofit potential of the historical building façades via application of silica aerogels on the external walls. Monitored data provided the basis for generation of a more accurate initial simulation model, as well as the evaluation of the predictive performance of the model.


2019 ◽  
Vol 220 (2) ◽  
pp. 1368-1378
Author(s):  
M Bertin ◽  
S Marin ◽  
C Millet ◽  
C Berge-Thierry

SUMMARY In low-seismicity areas such as Europe, seismic records do not cover the whole range of variable configurations required for seismic hazard analysis. Usually, a set of empirical models established in such context (the Mediterranean Basin, northeast U.S.A., Japan, etc.) is considered through a logic-tree-based selection process. This approach is mainly based on the scientist’s expertise and ignores the uncertainty in model selection. One important and potential consequence of neglecting model uncertainty is that we assign more precision to our inference than what is warranted by the data, and this leads to overly confident decisions and precision. In this paper, we investigate the Bayesian model averaging (BMA) approach, using nine ground-motion prediction equations (GMPEs) issued from several databases. The BMA method has become an important tool to deal with model uncertainty, especially in empirical settings with large number of potential models and relatively limited number of observations. Two numerical techniques, based on the Markov chain Monte Carlo method and the maximum likelihood estimation approach, for implementing BMA are presented and applied together with around 1000 records issued from the RESORCE-2013 database. In the example considered, it is shown that BMA provides both a hierarchy of GMPEs and an improved out-of-sample predictive performance.


2020 ◽  
Vol 21 (4) ◽  
pp. 1508
Author(s):  
Yi Zhang ◽  
Min Chen ◽  
Ang Li ◽  
Xiaohui Cheng ◽  
Hong Jin ◽  
...  

Long non-coding RNAs (long ncRNAs, lncRNAs) of all kinds have been implicated in a range of cell developmental processes and diseases, while they are not translated into proteins. Inferring diseases associated lncRNAs by computational methods can be helpful to understand the pathogenesis of diseases, but those current computational methods still have not achieved remarkable predictive performance: such as the inaccurate construction of similarity networks and inadequate numbers of known lncRNA–disease associations. In this research, we proposed a lncRNA–disease associations inference based on integrated space projection scores (LDAI-ISPS) composed of the following key steps: changing the Boolean network of known lncRNA–disease associations into the weighted networks via combining all the global information (e.g., disease semantic similarities, lncRNA functional similarities, and known lncRNA–disease associations); obtaining the space projection scores via vector projections of the weighted networks to form the final prediction scores without biases. The leave-one-out cross validation (LOOCV) results showed that, compared with other methods, LDAI-ISPS had a higher accuracy with area-under-the-curve (AUC) value of 0.9154 for inferring diseases, with AUC value of 0.8865 for inferring new lncRNAs (whose associations related to diseases are unknown), with AUC value of 0.7518 for inferring isolated diseases (whose associations related to lncRNAs are unknown). A case study also confirmed the predictive performance of LDAI-ISPS as a helper for traditional biological experiments in inferring the potential LncRNA–disease associations and isolated diseases.


Sign in / Sign up

Export Citation Format

Share Document