scholarly journals LDAI-ISPS: LncRNA–Disease Associations Inference Based on Integrated Space Projection Scores

2020 ◽  
Vol 21 (4) ◽  
pp. 1508
Author(s):  
Yi Zhang ◽  
Min Chen ◽  
Ang Li ◽  
Xiaohui Cheng ◽  
Hong Jin ◽  
...  

Long non-coding RNAs (long ncRNAs, lncRNAs) of all kinds have been implicated in a range of cell developmental processes and diseases, while they are not translated into proteins. Inferring diseases associated lncRNAs by computational methods can be helpful to understand the pathogenesis of diseases, but those current computational methods still have not achieved remarkable predictive performance: such as the inaccurate construction of similarity networks and inadequate numbers of known lncRNA–disease associations. In this research, we proposed a lncRNA–disease associations inference based on integrated space projection scores (LDAI-ISPS) composed of the following key steps: changing the Boolean network of known lncRNA–disease associations into the weighted networks via combining all the global information (e.g., disease semantic similarities, lncRNA functional similarities, and known lncRNA–disease associations); obtaining the space projection scores via vector projections of the weighted networks to form the final prediction scores without biases. The leave-one-out cross validation (LOOCV) results showed that, compared with other methods, LDAI-ISPS had a higher accuracy with area-under-the-curve (AUC) value of 0.9154 for inferring diseases, with AUC value of 0.8865 for inferring new lncRNAs (whose associations related to diseases are unknown), with AUC value of 0.7518 for inferring isolated diseases (whose associations related to lncRNAs are unknown). A case study also confirmed the predictive performance of LDAI-ISPS as a helper for traditional biological experiments in inferring the potential LncRNA–disease associations and isolated diseases.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260329
Author(s):  
Yi Zhang ◽  
Min Chen ◽  
Li Huang ◽  
Xiaolan Xie ◽  
Xin Li ◽  
...  

It is well known that numerous long noncoding RNAs (lncRNAs) closely relate to the physiological and pathological processes of human diseases and can serves as potential biomarkers. Therefore, lncRNA-disease associations that are identified by computational methods as the targeted candidates reduce the cost of biological experiments focusing on deep study furtherly. However, inaccurate construction of similarity networks and inadequate numbers of observed known lncRNA–disease associations, such inherent problems make many mature computational methods that have been developed for many years still exit some limitations. It motivates us to explore a new computational method that was fused with KATZ measure and space projection to fast probing potential lncRNA-disease associations (namely KATZSP). KATZSP is comprised of following key steps: combining all the global information with which to change Boolean network of known lncRNA–disease associations into the weighted networks; changing the similarities calculation into counting the number of walks that connect lncRNA nodes and disease nodes in bipartite graphs; obtaining the space projection scores to refine the primary prediction scores. The process to fuse KATZ measure and space projection was simplified and uncomplicated with needing only one attenuation factor. The leave-one-out cross validation (LOOCV) experimental results showed that, compared with other state-of-the-art methods (NCPLDA, LDAI-ISPS and IIRWR), KATZSP had a higher predictive accuracy shown with area-under-the-curve (AUC) value on the three datasets built, while KATZSP well worked on inferring potential associations related to new lncRNAs (or isolated diseases). The results from real cases study (such as pancreas cancer, lung cancer and colorectal cancer) further confirmed that KATZSP is capable of superior predictive ability to be applied as a guide for traditional biological experiments.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 881 ◽  
Author(s):  
Jihwan Ha ◽  
Chihyun Park ◽  
Chanyoung Park ◽  
Sanghyun Park

The identification of potential microRNA (miRNA)-disease associations enables the elucidation of the pathogenesis of complex human diseases owing to the crucial role of miRNAs in various biologic processes and it yields insights into novel prognostic markers. In the consideration of the time and costs involved in wet experiments, computational models for finding novel miRNA-disease associations would be a great alternative. However, computational models, to date, are biased towards known miRNA-disease associations; this is not suitable for rare miRNAs (i.e., miRNAs with a few known disease associations) and uncommon diseases (i.e., diseases with a few known miRNA associations). This leads to poor prediction accuracies. The most straightforward way of improving the performance is by increasing the number of known miRNA-disease associations. However, due to lack of information, increasing attention has been paid to developing computational models that can handle insufficient data via a technical approach. In this paper, we present a general framework—improved prediction of miRNA-disease associations (IMDN)—based on matrix completion with network regularization to discover potential disease-related miRNAs. The success of adopting matrix factorization is demonstrated by its excellent performance in recommender systems. This approach considers a miRNA network as additional implicit feedback and makes predictions for disease associations relevant to a given miRNA based on its direct neighbors. Our experimental results demonstrate that IMDN achieved excellent performance with reliable area under the receiver operating characteristic (ROC) area under the curve (AUC) values of 0.9162 and 0.8965 in the frameworks of global and local leave-one-out cross-validations (LOOCV), respectively. Further, case studies demonstrated that our method can not only validate true miRNA-disease associations but also suggest novel disease-related miRNA candidates.


2020 ◽  
Author(s):  
Xiao-Zhu Hong ◽  
Po-An Chen ◽  
Hsun-Chuan Chan

<p>The riverbank landslide is considered as the major sediment supply in the watershed. It mostly due to the river flows erode the foot of the riverbank, which makes the slope unstable. This study focused on the watershed susceptibility analysis of the riverbank landslide in the Chenyulan watershed. The Logistic regression method was used to establish the landslide susceptibility model not only with the topography, geological and anthropic factors, but also with the hydraulic factors including the hydraulic Sinuosity index, channel gradient, and concave-or-convex bank. The study areas were classified into four regions, according to the river-bed slope and confluence of rivers. The effects of the hydraulic factors on the model results were investigated. In the upstream region with mild topographic slope, the landslides were found to be dominated by the topography factors. The area under the curve (AUC) value of the model was 74.2%. In the upstream region with steep topographic slope, the steep hillslopes and the channel erosion of the concave bank produced a high weight of concave-or-convex bank in the model. The developed model exhibited an increased AUC value of 77.2%. In the downstream region, the lateral erosion of the channel increased the weights of hydraulic sinuosity index and channel gradient in the model. The developed model exhibited high area under the curve (AUC) value of 89.2%. The hydraulic factors increased the predictive performance of the model considerably.</p><p>Keyword: Riverbank, Hydraulic factors, Logistic regression</p>


2019 ◽  
Author(s):  
Yubin Xiao ◽  
Zheng Xiao ◽  
Xiang Feng ◽  
Zhiping Chen ◽  
Linai Kuang ◽  
...  

Abstract BackgroundAccumulating evidence has demonstrated that lncRNAs are closely associated with human diseases, and it is helpful for the diagnosis and treatment of diseases to get the relationships between lncRNAs and diseases. Due to the high costs and time complexity of traditional bio-experiments, in recent years, more and more computational methods have been proposed by researchers to infer potential lncRNA-disease associations. However, there exist all kinds of limitations in these prediction methods as well. ResultsIn this manuscript, a novel computational model named FVTLDA is proposed to infer potential lncRNA-disease associations. In FVTLDA, its major novelty lies in the integration of direct and indirect features related to lncRNA-disease associations such as the feature vectors of lncRNA-disease pairs and their corresponding association probability fractions, which guarantees that FVTLDA can be utilized to predict diseases without known related-lncRNAs and lncRNAs without known related-diseases. Moreover, FVTLDA neither relies solely on known lncRNA-disease nor requires any negative samples, which guarantee that it can infer potential lncRNA-disease associations more equitably and effectively than traditional methods. Additionally, to avoid the limitations of single model prediction techniques, we combine FVTLDA with the Multiple Linear Regression (MLR) and the Artificial Neural Network (ANN) for data analysis respectively. Simulation experiment results show that FVTLDA with MLR can achieve reliable AUCs of 0.8909, 0.8936 and 0.8970 in 5-Fold Cross Validation, 10-Fold Cross Validation and Leave-One-Out Cross Validation, separately, while FVTLDA with ANN can achieve reliable AUCs of 0.8766, 0.8830 and 0.8807 in 5-fold CV, 10-fold CV, and LOOCV respectively. Furthermore, in case studies of gastric cancer, leukemia and lung cancer, experiment results show that there are 8, 8 and 8 out of top 10 candidate lncRNAs predicted by FVTLDA with MLR, and 8, 7 and 8 out of top 10 candidate lncRNAs predicted by FVTLDA with ANN, having been verified by recent literature. Moreover, comparing with the representative prediction model of KATZLDA, results illustrate that FVTLDA with MLR and FVTLDA with ANN can achieve the average case study contrast scores of 0.8429 and 0.8515 respectively, which are both higher than the average case study contrast score of 0.6375 achieved by KATZLDA.


2019 ◽  
Vol 35 (22) ◽  
pp. 4730-4738 ◽  
Author(s):  
Yan Zhao ◽  
Xing Chen ◽  
Jun Yin

AbstractMotivationRecent studies have shown that microRNAs (miRNAs) play a critical part in several biological processes and dysregulation of miRNAs is related with numerous complex human diseases. Thus, in-depth research of miRNAs and their association with human diseases can help us to solve many problems.ResultsDue to the high cost of traditional experimental methods, revealing disease-related miRNAs through computational models is a more economical and efficient way. Considering the disadvantages of previous models, in this paper, we developed adaptive boosting for miRNA-disease association prediction (ABMDA) to predict potential associations between diseases and miRNAs. We balanced the positive and negative samples by performing random sampling based on k-means clustering on negative samples, whose process was quick and easy, and our model had higher efficiency and scalability for large datasets than previous methods. As a boosting technology, ABMDA was able to improve the accuracy of given learning algorithm by integrating weak classifiers that could score samples to form a strong classifier based on corresponding weights. Here, we used decision tree as our weak classifier. As a result, the area under the curve (AUC) of global and local leave-one-out cross validation reached 0.9170 and 0.8220, respectively. What is more, the mean and the standard deviation of AUCs achieved 0.9023 and 0.0016, respectively in 5-fold cross validation. Besides, in the case studies of three important human cancers, 49, 50 and 50 out of the top 50 predicted miRNAs for colon neoplasms, hepatocellular carcinoma and breast neoplasms were confirmed by the databases and experimental literatures.Availability and implementationThe code and dataset of ABMDA are freely available at https://github.com/githubcode007/ABMDA.Supplementary informationSupplementary data are available at Bioinformatics online.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1835
Author(s):  
Linqian Cui ◽  
You Lu ◽  
Jiacheng Sun ◽  
Qiming Fu ◽  
Xiao Xu ◽  
...  

Numerous studies have confirmed that microRNAs play a crucial role in the research of complex human diseases. Identifying the relationship between miRNAs and diseases is important for improving the treatment of complex diseases. However, traditional biological experiments are not without restrictions. It is an urgent necessity for computational simulation to predict unknown miRNA-disease associations. In this work, we combine Q-learning algorithm of reinforcement learning to propose a RFLMDA model, three submodels CMF, NRLMF, and LapRLS are fused via Q-learning algorithm to obtain the optimal weight S. The performance of RFLMDA was evaluated through five-fold cross-validation and local validation. As a result, the optimal weight is obtained as S (0.1735, 0.2913, 0.5352), and the AUC is 0.9416. By comparing the experiments with other methods, it is proved that RFLMDA model has better performance. For better validate the predictive performance of RFLMDA, we use eight diseases for local verification and carry out case study on three common human diseases. Consequently, all the top 50 miRNAs related to Colorectal Neoplasms and Breast Neoplasms have been confirmed. Among the top 50 miRNAs related to Colon Neoplasms, Gastric Neoplasms, Pancreatic Neoplasms, Kidney Neoplasms, Esophageal Neoplasms, and Lymphoma, we confirm 47, 41, 49, 46, 46 and 48 miRNAs respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haixiu Yang ◽  
Fan Tong ◽  
Changlu Qi ◽  
Ping Wang ◽  
Jiangyu Li ◽  
...  

Many microbes are parasitic within the human body, engaging in various physiological processes and playing an important role in human diseases. The discovery of new microbe–disease associations aids our understanding of disease pathogenesis. Computational methods can be applied in such investigations, thereby avoiding the time-consuming and laborious nature of experimental methods. In this study, we constructed a comprehensive microbe–disease network by integrating known microbe–disease associations from three large-scale databases (Peryton, Disbiome, and gutMDisorder), and extended the random walk with restart to the network for prioritizing unknown microbe–disease associations. The area under the curve values of the leave-one-out cross-validation and the fivefold cross-validation exceeded 0.9370 and 0.9366, respectively, indicating the high performance of this method. Despite being widely studied diseases, in case studies of inflammatory bowel disease, asthma, and obesity, some prioritized disease-related microbes were validated by recent literature. This suggested that our method is effective at prioritizing novel disease-related microbes and may offer further insight into disease pathogenesis.


2017 ◽  
Vol 23 (32) ◽  
pp. 4773-4793 ◽  
Author(s):  
Nivedita Singh ◽  
Sherry Freiesleben ◽  
Olaf Wolkenhauer ◽  
Yogeshwer Shukla ◽  
Shailendra K. Gupta

The identification and validation of novel drug–target combinations are key steps in the drug discovery processes. Cancer is a complex disease that involves several genetic and environmental factors. High-throughput omics technologies are now widely available, however the integration of multi-omics data to identify viable anticancer drug-target combinations, that allow for a better clinical outcome when considering the efficacy-toxicity spectrum, is challenging. This review article provides an overview of systems approaches which help to integrate a broad spectrum of technologies and data. We focus on network approaches and investigate anticancer mechanism and biological targets of resveratrol using reverse pharmacophore mapping as an in-depth case study. The results of this case study demonstrate the use of systems approaches for a better understanding of the behavior of small molecule inhibitors in receptor binding sites. The presented network analysis approach helps in formulating hypotheses and provides mechanistic insights of resveratrol in neoplastic transformations.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2133
Author(s):  
Francisco O. Cortés-Ibañez ◽  
Sunil Belur Nagaraj ◽  
Ludo Cornelissen ◽  
Gerjan J. Navis ◽  
Bert van der Vegt ◽  
...  

Cancer incidence is rising, and accurate prediction of incident cancers could be relevant to understanding and reducing cancer incidence. The aim of this study was to develop machine learning (ML) models that could predict an incident diagnosis of cancer. Participants without any history of cancer within the Lifelines population-based cohort were followed for a median of 7 years. Data were available for 116,188 cancer-free participants and 4232 incident cancer cases. At baseline, socioeconomic, lifestyle, and clinical variables were assessed. The main outcome was an incident cancer during follow-up (excluding skin cancer), based on linkage with the national pathology registry. The performance of three ML algorithms was evaluated using supervised binary classification to identify incident cancers among participants. Elastic net regularization and Gini index were used for variables selection. An overall area under the receiver operator curve (AUC) <0.75 was obtained, the highest AUC value was for prostate cancer (random forest AUC = 0.82 (95% CI 0.77–0.87), logistic regression AUC = 0.81 (95% CI 0.76–0.86), and support vector machines AUC = 0.83 (95% CI 0.78–0.88), respectively); age was the most important predictor in these models. Linear and non-linear ML algorithms including socioeconomic, lifestyle, and clinical variables produced a moderate predictive performance of incident cancers in the Lifelines cohort.


Sign in / Sign up

Export Citation Format

Share Document