Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth

2003 ◽  
Vol 38 (78) ◽  
pp. 716-725 ◽  
Author(s):  
Koichi Kakimoto ◽  
Lijun Liu
Author(s):  
Lijun Liu ◽  
Koichi Kakimoto

In order to control the impurity distribution and remove defects in a crystal grown in Czochralski growth for high quality crystals of silicon, it is necessary to study and control the melt-crystal interface shape, which plays an important role in control of the crystal quality. The melt-crystal interface interacts with and is determined by the convective thermal flow of the melt in the crucible. Application of magnetic field in the Czochralski system is an effective tool to control the convective thermal flow in the crucible. Therefore, the shape of the melt-crystal interface can be modified accordingly. Numerical study is performed in this paper to understand the effect of magnetic field on the interface deflection in Czochralski system. Comparisons have been carried out by computations for four arrangements of the magnetic field: without magnetic field, a vertical magnetic field and two types of cusp-shaped magnetic field. The velocity, pressure, thermal and electromagnetic fields are solved with adaptation of the mesh to the iteratively modified interface shape. The multi-block technique is applied to discretize the melt field in the crucible and the solid field of silicon crystal. The unknown shape of the melt-crystal interface is achieved by an iterative procedure. The computation results show that the magnetic fields have obvious effects on both the pattern and strength of the convective flow and the interface shape. Applying magnetic field in the Czochralski system, therefore, is an effective tool to control the quality of bulk crystal in Czochralski growth process.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zaoyang Li ◽  
Lijun Liu ◽  
Yunfeng Zhang ◽  
Genshu Zhou

We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS) process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.


2010 ◽  
Vol 46 (4) ◽  
pp. 393-402 ◽  
Author(s):  
F. Mokhtari ◽  
A. Bouabdallah ◽  
A. Merah ◽  
S. Hanchi ◽  
A. Alemany

2011 ◽  
Vol 110 (4) ◽  
pp. 043903 ◽  
Author(s):  
H. Okada ◽  
N. Hirota ◽  
S. Matsumoto ◽  
H. Wada

2002 ◽  
Vol 5 (4-5) ◽  
pp. 347-351 ◽  
Author(s):  
Erich Tomzig ◽  
Janis Virbulis ◽  
Wilfried von Ammon ◽  
Yuri Gelfgat ◽  
Leonid Gorbunov

Sign in / Sign up

Export Citation Format

Share Document