Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters

1984 ◽  
Vol 19 (1) ◽  
pp. K1-K3 ◽  
Author(s):  
H. Fichtner-Schmittler ◽  
U. Lohse ◽  
G. Engelhardt ◽  
V. Patzelová
2011 ◽  
Vol 109 (1) ◽  
pp. 013107 ◽  
Author(s):  
Masihhur R. Laskar ◽  
Tapas Ganguli ◽  
A. A. Rahman ◽  
Amlan Mukherjee ◽  
Nirupam Hatui ◽  
...  

1994 ◽  
Vol 49 (3) ◽  
pp. 430-433 ◽  
Author(s):  
Hans-Dieter Hausen ◽  
Jochen Tödtmann ◽  
Johann Weidlein

AbstractN-M ethyl-2-dimethylaluminium pyrrolide, (CH3)2Al -C4H3NCH3, crystallizes in the triclinic space group P1̄ with the lattice constants a = 700.5(1), b = 725.9(1), c = 886.8(1) pm, α = 67.69(1)°, β = 70.99(1)°, γ = 88.48(1)°, and Z = 2. This compound is isotypic with the gallium homologue [1], the shortest metal-ring contact between the two molecules of one unit cell decreases to 228.6 pm. N-dimethylgallium tetramethylpyrrolide has been synthesized from Li-N (CCH3)4 and (CH3)2GaCl. This “π-associate” crystallizes in the monoclinic space group P21/c with the lattice parameters a = 989.9(2), b = 1305.4(3), c = 878.3(2) pm, β - 112.73(1)° and 4 units per cell. Again two centrosymmetrically orientated molecules form a dimer by short (224.0 pm) intermolecular “Ga - πC ” contacts but the structure differs significant from the structure of the indium homologue [1].


1990 ◽  
Vol 55 (4) ◽  
pp. 1010-1014 ◽  
Author(s):  
Jiří Kameníček ◽  
Richard Pastorek ◽  
František Březina ◽  
Bohumil Kratochvíl ◽  
Zdeněk Trávníček

The crystal and molecular structure of the title compound (C8H16N2NiS4) was solved by the heavy atom method and the structure was refined anisotropically to a final R factor of R = 0.029 (wR = 0.037) for 715 observed reflections. The crystal is monoclinic, space group P21/c with a = 948.3(2), b = 776.9(2), c = 1 167.4(2) pm, β = 125.14(2)°, Z = 2. The molecule contains two four-membered NiSCS rings of approximately planar configuration with the Ni atom situated at a centre of symmetry. The molecules are arranged in chains along the c-axis of the unit cell.


1999 ◽  
Vol 55 (6) ◽  
pp. 975-983 ◽  
Author(s):  
M. Quiquandon ◽  
A. Katz ◽  
F. Puyraimond ◽  
D. Gratias

It is well known that the crystallography of approximants is directly related to that of the parent quasicrystal, once its unit-cell vectors are identified as parallel projections of certain N-dimensional lattice nodes {\bf A}^{i}. Derived here are explicit simple relations for calculating the shear matrices {\boldvarepsilon} and the related crystallographic properties of the corresponding approximants, including diffraction indexing and the determination of the lattice in perpendicular space. Applied to low-dimensional approximants, the derivation shows that the systematic `accidental' extinction rules observed in the pentagonal phases are generic extinctions that are due to the geometrical properties of the projected 1D lattice and are independent of the actual model of the quasicrystal.


Sign in / Sign up

Export Citation Format

Share Document