Differences among Fine Fescue Taxa Used in Turf Areas

CSA News ◽  
2020 ◽  
Vol 65 (5) ◽  
pp. 16-16
Keyword(s):  
Crop Science ◽  
1995 ◽  
Vol 35 (2) ◽  
pp. 313 ◽  
Author(s):  
B. A. Ruemmele ◽  
L. A. Brilman ◽  
D. R. Huff

2020 ◽  
Vol 54 (3) ◽  
pp. 257-263
Author(s):  
Reza Mohammadi ◽  
Bahman Panahi ◽  
Saleh Amiri

HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 416-420 ◽  
Author(s):  
Austin L. Grimshaw ◽  
Yuanshuo Qu ◽  
William A. Meyer ◽  
Eric Watkins ◽  
Stacy A. Bonos

In recent years, turfgrass breeders have given increased attention to the development of lower maintenance turfgrass cultivars. Fine fescues (Festuca spp.) have been identified as potential candidate species for low-maintenance lawns because of their reduced need for water, mowing, and fertilizer. Unfortunately, these species have some weaknesses that must be improved to facilitate their use; perhaps, the most important of these is tolerance to wear and traffic. For this trait to be improved in new cultivars, there must be sufficient heritable variation available for plant breeders to exploit; however, little is known about the heritability of this complex trait in fine fescue species. Therefore, the objective of this study was to determine the heritability of wear and traffic tolerance in three fine fescue species. Replicated field studies were established in North Brunswick, NJ, and St. Paul, MN, and each included 157 Chewing’s fescue (Festuca rubra L. subsp. fallax), 155 hard fescue (Festuca brevipilia), and 149 strong creeping red fescue (F. rubra L. subsp. rubra) genotypes. Wear tolerance was evaluated in North Brunswick and traffic tolerance was evaluated in St. Paul during 2015 and 2016 using different simulators to determine both plant performance and broad-sense heritability estimates for wear and traffic tolerance. Broad-sense heritability estimates for the three species when calculated on a clonal basis was between 0.69 and 0.82 for wear tolerance in the North Brunswick location and between 0.49 and 0.60 for traffic tolerance in the St. Paul location. On a single-plant basis, broad-sense heritability estimates for the three species were between 0.31 and 0.45 for wear tolerance in the North Brunswick location and 0.09 and 0.12 for traffic tolerance in St. Paul. However, this research does indicate that improvement of wear and traffic tolerance in fine fescues is possible through recurrent breeding methods based on selection of replicated clonally propagated genotypes rather than selection of single individual plants of a population. This was the first study to determine the genetic effects of wear and traffic tolerance in any turfgrass species.


Mycologia ◽  
2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Luo ◽  
Phillip L. Vines ◽  
Austin Grimshaw ◽  
Lindsey Hoffman ◽  
Emily Walsh ◽  
...  
Keyword(s):  

2019 ◽  
Vol 29 (3) ◽  
pp. 265-270 ◽  
Author(s):  
Yuanshuo Qu ◽  
Ryan M. Daddio ◽  
Patrick E. McCullough ◽  
Stacy A. Bonos ◽  
William A. Meyer

Methiozolin is a new herbicide that controls annual bluegrass (Poa annua) in turfgrasses, but the differential tolerance levels of fine fescues (Festuca sp.) has received limited investigation. The objective of this study was to investigate the potential injury from methiozolin when applied to chewings fescue (Festuca rubra ssp. fallax), strong creeping red fescue (Festuca rubra ssp. rubra), and hard fescue (Festuca brevipila). Nine different fine fescue populations (14W2 Comp, Fairmont, and Survivor chewings fescue; FT345, Miser, and Fenway strong creeping red fescue; and 14H4 Comp, Stonehenge, and Oxford hard fescue) were sprayed with methiozolin at five different rates (0.42, 0.83, 1.25, 1.67, and 2.09 lb/acre) at four different application timings [4 weeks before seeding (WBS), 2 WBS, at seeding (AS), and 2 weeks after germination (WAG)]. Untreated controls were also included for each combination. Significant reduction in germination of fine fescue was observed when methiozolin was applied before emergence for all tested application rates. Methiozolin at 1.25, 1.67, and 2.09 lb/acre applied before or at the day of seeding led to complete inhibition of germination in all fine fescue species tested. It was less injurious compared with methiozolin applied at 2 WAG, although a reduction in the percentage of green cover and biomass was observed for application rates greater or equal to 0.83 lb/acre. The hierarchical ranking of species injury from high to low is as follows: hard fescue, chewings fescue, and strong creeping red fescue. A possible solution for annual bluegrass control in fine fescue species with methiozolin is multiple postemergence applications up to a maximum rate of 0.83 lb/acre. Turf managers need to make adjustments in methiozolin application rates and timings based on fine fescue species to maximize selectivity for annual bluegrass control.


2019 ◽  
Author(s):  
Yinjie Qiu ◽  
Cory D. Hirsch ◽  
Ya Yang ◽  
Eric Watkins

AbstractFine fescues (Festuca L., Poaceae) are turfgrass species that perform well in low-input environments. Based on morphological characteristics, the most commonly-utilized fine fescues are divided into five taxa: three are subspecies within F. rubra L. and the remaining two are treated as species within the F. ovina L. complex. Morphologically, these five taxa are very similar, both identification and classification of fine fescues remain challenging. In an effort to develop identification methods for fescues, we used flow cytometry to estimate genome size, ploidy level, and sequenced the chloroplast genome of all five taxa. Fine fescue chloroplast genome sizes ranged from 133,331 to 133,841 bp and contained 113 to 114 genes. Phylogenetic relationship reconstruction using whole chloroplast genome sequences agreed with previous work based on morphology. Comparative genomics suggested unique repeat signatures for each fine fescue taxon that could potentially be used for marker development for taxon identification.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


Sign in / Sign up

Export Citation Format

Share Document