ISSR Based Study of Fine Fescue (Festuca ovina L.) Highlighted the Genetic Diversity of Iranian Accessions

2020 ◽  
Vol 54 (3) ◽  
pp. 257-263
Author(s):  
Reza Mohammadi ◽  
Bahman Panahi ◽  
Saleh Amiri
Author(s):  
Yinjie Qiu ◽  
Sierra Hamernick ◽  
Joan Barreto Ortiz ◽  
Eric Watkins

ABSTRACTFestuca ovina is a fine fescue that is used as a low-input turfgrass. The ploidy levels of F. ovina accessions held by the USDA National Plant Germplasm System (NPGS) are unknown, limiting the use of the germplasm in breeding programs. The objective of this study was to determine DNA content and estimate ploidy of these 127 accessions. Among the accessions, we identified a wide range of ploidy levels from diploid to octoploid. We also found the accessions with higher ploidy levels usually had larger seed size. These results will be informative to plant breeders and researchers using germplasm from the F. ovina collection and point to challenges in maintaining polyploid, outcrossing germplasm seed stocks in common nurseries.


Author(s):  
Chenglin Zhang ◽  
Jianbo Zhang ◽  
Yan Fan ◽  
Ming Sun ◽  
Wendan Wu ◽  
...  

Glaciation and mountain orogeny have generated new ecologic opportunities for plants, favoring an increase in the speciation rate. Moreover, they also act as corridors or barriers for plant lineages and populations. High genetic diversity ensures that species are able to survive and adapt. Gene flow is one of the most important determinants of the genetic diversity and structure of out-crossed species, and it is easily affected by biotic and abiotic factors. The aim of this study was to characterize the genetic diversity and structure of an alpine species, Festuca ovina L., in Xingjiang, China. A total of 100 individuals from 10 populations were analyzed using six amplified fragment length polymorphism (AFLP) primer pairs. A total of 583 clear bands were generated, of which 392 were polymorphic; thus, the percentage of polymorphic bands (PPB) was 67.24%. The total and average genetic diversities were 0.2722 and 0.2006 (0.1686-0.2225), respectively. The unweighted group method with arithmetic mean (UPGMA) tree, principal coordinates analysis (PCoA) and STRUCTURE analyses revealed that these populations or individuals could be clustered into two groups. The analysis of molecular variance analysis (AMOVA) suggested that most of the genetic variance existed within a population, and the genetic differentiation (Fst) among populations was 20.71%. The Shannon differentiation coefficient (G’st) among populations was 0.2350. Limited gene flow (Nm = 0.9571) was detected across all sampling sites. The Fst and Nm presented at different levels under the genetic barriers due to fragmentation. The population genetic diversity was significant relative to environmental factors such as temperature, altitude and precipitation.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
YH Kim ◽  
JA Ryuk ◽  
BS Ko ◽  
JW Lee ◽  
SE Oh ◽  
...  

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
K Shinde ◽  
V Shinde ◽  
J Kurane ◽  
A Harsulkar ◽  
K Mahadik

2019 ◽  
Author(s):  
EV Avramidou ◽  
E Sarrou ◽  
P Papaporfiriou ◽  
E Abraham
Keyword(s):  

2018 ◽  
Vol 30 (2) ◽  
pp. 19-28
Author(s):  
A. J. Oludare ◽  
J. I. Kioko ◽  
A. A. Akeem ◽  
A. T. Olumide ◽  
K. R. Justina ◽  
...  

Nine accessions of Bambara groundnut (Vigna subterranea (L.) Verdc.,syn. Voandzeia subterranea (L.) Thouars ex DC.)  obtained from National Centre for Genetic Resources and Biotechnology (NACGRAB), Ibadan, Oyo state, were assessed for their genetic and phylogenetic relatedness through electrophoretic analysis of the seed proteins. 0.2g of the seeds were weighed and macerated with mortar and pestle in 0.2M phosphate buffer containing 0.133M of acid (NaH2PO4) and 0.067 of base (Na2HPO4) at pH 6.5. Protein characterization with standard marker revealed that the seeds of the nine accessions contained proteins (B.S.A, Oval Albumin, Pepsinogen, Trypsinogen and Lysozyme) with molecular weights ranging from 66kda and above, 45 – 65 kDa, 44 – 33 kda, 32-24 kDa and 23-14 kDa, respectively. The student T-test revealed that accessions B, C, E, F, H and I have molecular weights not significantly different from one another (P<0.05) while samples A, D and G showed significantly different values (P>0.05). All the accessions had at least two proteins and two major bands in common. The study revealed intra-specific similarities and genetic diversity in protein contents among the nine accessions of Bambara groundnut (Vigna subterraranea (L.) Verdc.syn


Sign in / Sign up

Export Citation Format

Share Document