The Fate of Fungicides Post‐Irrigation on Putting Greens

CSA News ◽  
2021 ◽  
Keyword(s):  
Author(s):  
Karen K. Baker ◽  
David L. Roberts

Plant disease diagnosis is most often accomplished by examination of symptoms and observation or isolation of causal organisms. Occasionally, diseases of unknown etiology occur and are difficult or impossible to accurately diagnose by the usual means. In 1980, such a disease was observed on Agrostis palustris Huds. c.v. Toronto (creeping bentgrass) putting greens at the Butler National Golf Course in Oak Brook, IL.The wilting symptoms of the disease and the irregular nature of its spread through affected areas suggested that an infectious agent was involved. However, normal isolation procedures did not yield any organism known to infect turf grass. TEM was employed in order to aid in the possible diagnosis of the disease.Crown, root and leaf tissue of both infected and symptomless plants were fixed in cold 5% glutaraldehyde in 0.1 M phosphate buffer, post-fixed in buffered 1% osmium tetroxide, dehydrated in ethanol and embedded in a 1:1 mixture of Spurrs and epon-araldite epoxy resins.


itsrj ◽  
2021 ◽  
Author(s):  
Xunzhong Zhang ◽  
Mike Goatley ◽  
David McCall ◽  
Kelly Kosiarski ◽  
Frank Reith

2004 ◽  
Vol 18 (3) ◽  
pp. 560-565 ◽  
Author(s):  
Keith D. Burnell ◽  
Fred H. Yelverton ◽  
Joseph C. Neal ◽  
Travis W. Gannon ◽  
J. Scott McElroy

Field experiments were conducted to evaluate chemicals for silvery-thread moss control and bentgrass turfgrass quality. Treatments included iron (Fe)-containing products, nitrogen fertilizers, Ultra Dawn dishwashing detergent (UD) at 3% (v/v), and oxadiazon. In general, greater silvery-thread moss control was achieved with Fe-containing products. Ferrous sulfate at 40 kg Fe/ha plus ammonium sulfate at 30 kg N/ha, a combined product of ferrous oxide, ferrous sulfate, and iron humates (FEOSH) at 125 kg Fe/ha, and a combined product of iron disulfide and ferrous sulfate (FEDS) at 112 kg Fe/ha reduced silvery-thread moss populations 87, 81, and 69%, respectively, 6 wk after initial treatment (WAIT). UD reduced silvery-thread moss populations 57% 6 WAIT. The addition of oxadiazon to Fe-containing treatments did not improve silvery-thread moss population reduction. Other experiments evaluated two formulations of chlorothalonil, each applied at two rates, chlorothalonil with zinc at 9.5 and 17.4 kg ai/ha and chlorothalonil without zinc at 9.1 and 18.2 kg/ ha, and two spray volumes (2,038 and 4,076 L/ha). Greater silvery-thread moss population reduction was observed at Jefferson Landing in 1999 compared with Elk River in 1999 and 2000. Rainfall events at Elk River in 1999 and 2000 within 24 h after application and no rain at Jefferson Landing may account for variation in performance of products between sites. However, no difference in chlorothalonil formulation, rate, or spray volume was observed in any location or year. These data indicate that Fe-containing fertilizers or chlorothalonil can be used to reduce silvery-thread moss populations in creeping bentgrass putting greens.


2005 ◽  
Vol 2 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Brian P. Boesch ◽  
Nathaniel A. Mitkowski

Crop Science ◽  
2018 ◽  
Vol 58 (4) ◽  
pp. 1801-1807 ◽  
Author(s):  
E. H. Reasor ◽  
J. T. Brosnan ◽  
J. P. Kerns ◽  
W. J. Hutchens ◽  
D. R. Taylor ◽  
...  

Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 905-905 ◽  
Author(s):  
N. A. Mitkowski

In the fall of 2006, a golf course in Snoqualmie, WA renovated five putting greens with commercially produced Poa annua L. sod from British Columbia, Canada. Prior to the renovation, the greens had been planted with Agrostis stolonifera L. cv. Providence, which was removed during the renovation. In February of 2007, chlorotic patches were observed on the newly established P. annua greens. When the roots were examined, extensive galling was observed throughout plant roots. Galls were slender and twisted in appearance and less than one millimeter long. Upon dissection of washed galls, hundreds of eggs were exuded into the surrounding water droplet and both mature male and female nematodes were observed. Further morphometric examination of males, females, and juvenile nematodes demonstrated that they were Subanguina radicicola (Greef 1872) Paramanov 1967 (1). Amplification of nematode 18S, ITS1, and 5.8S regions, using previously published primers (2), resulted in a 100% sequence match with the publicly available sequence for S. radicicola, GenBank Accession No. AF396366. Each P. annua plant had an average of six galls (with a range of 1 to 8), primarily located within the top 2 cm of the soil. All five new P. annua putting greens at the golf course were infested with the nematode. Additionally, P. annua from two A. stolonifera cv. Providence greens that had not been renovated was infected, suggesting that the population occurred onsite and was not imported from the Canadian sod. S. radicicola has been identified as causing severe damage in New Brunswick, Canada on P. annua putting greens and in wild P. annua in the northwestern United States, but to our knowledge, this is the first report of the nematode affecting P. annua on a golf course in the United States. References: (1) E. L. Krall. Wheat and grass nematodes: Anguina, Subanguina, and related genera. Pages 721–760 in: Manual of Agricultural Nematology. Marcel Dekker, New York, 1991. (2) N. A. Mitkowski et al. Plant Dis. 86:840, 2002.


Weed Science ◽  
2018 ◽  
Vol 66 (5) ◽  
pp. 642-650 ◽  
Author(s):  
Zane Raudenbush ◽  
Joshua L. Greenwood ◽  
D. Nicholas McLetchie ◽  
Sarah M. Eppley ◽  
Steven J. Keeley ◽  
...  

AbstractSilvery-Thread Moss (Bryum argenteum Hedw.) is an undesirable invader of golf course putting greens across North America, establishing colonies and proliferating despite practices to suppress it. The goal was to grow genotypes of green (growing in putting greens) and native (growing in habitats outside of putting greens) B. argenteum in a common garden experiment, allowing an experimental test of life-history traits between genotypes from these two habitats. Seventeen collections of green and 17 collections of native B. argenteum were cloned to single genotypes and raised through a minimum of two asexual generations in the lab. A culture of each genotype was initiated using a single detached shoot apex and was allowed to grow for 6 mo under conditions of inorganic nutrients present and absent. Compared with genotypes from native habitats, genotypes of B. argenteum from putting greens exhibited earlier shoot regeneration and shoot induction, faster protonemal extension, longer (higher) shoots, lower production of gemmae and bulbils, and greater aerial rhizoid cover, and showed similar tendencies of chlorophyll fluorescence properties and chlorophyll content. Cultures receiving no inorganic nutrients produced less chlorophyll content, greatly reduced growth, and bleaching of shoots. Mosses from putting greens establish more quickly, grow faster, produce more abundant rhizoids, and yet do not produce as many specialized asexual propagules compared with mosses of the same species from native habitats. The highly managed putting green environment has either selected for a suite of traits that allow the moss to effectively compete with grasses, or genotypic diversity is very high in this species, allowing a set of specialized genotypes to colonize the putting green from native habitats. Successful golf course weeds have been able to adapt to this highly competitive environment by selection acting on traits or genotypes to produce plants more successful in competing with golf course grasses.


2021 ◽  
Author(s):  
Cameron Stephens ◽  
Travis W Gannon ◽  
Marc Cubeta ◽  
Tim L. Sit ◽  
Jim Kerns

Take-all root rot is a disease of ultradwarf bermudagrass putting greens caused by Gaeumannomyces graminis (Gg), Gaeumannomyces sp. (Gx), Gaeumannomyces graminicola (Ggram), Candidacolonium cynodontis (Cc), and Magnaporthiopsis cynodontis (Mc). Many etiological and epidemiological components of this disease remain unknown. Improving pathogen identification and our understanding of the aggressiveness of these pathogens along with growth at different temperatures will advance our knowledge of disease development to optimize management strategies. Take-all root rot pathogens were isolated from symptomatic bermudagrass root and stolon pieces from 16 different golf courses. Isolates of Gg, Gx, Ggram, Cc, and Mc were used to inoculate ‘Champion’ bermudagrass in an in planta aggressiveness assay. Each pathogen was also evaluated at 10, 15, 20, 25, 30, and 35C to determine growth temperature optima. Infected plant tissue was used to develop a real-time PCR high resolution melt assay for pathogen detection. This assay was able to differentiate each pathogen directly from infected plant tissue using a single primer pair. In general, Ggram, Gg, and Gx were the most aggressive while Cc and Mc exhibited moderate aggressiveness. Pathogens were more aggressive when incubated at 30C compared to 20C. While they grew optimally between 24.4 and 27.8C, pathogens exhibited limited growth at 35C and no growth at 10C. These data provide important information on this disease and its causal agents that may improve take-all root rot management.


Sign in / Sign up

Export Citation Format

Share Document