hormone metabolism
Recently Published Documents


TOTAL DOCUMENTS

646
(FIVE YEARS 67)

H-INDEX

55
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhihong Dai ◽  
Furong Zhao ◽  
Ying Li ◽  
Jing Xu ◽  
Zhiyu Liu

Bromophenols (BPs), known as an important environmental contaminant, can cause endocrine disruption and other chronic toxicity. The study aimed to investigate the potential inhibitory capability of BPs on four human sulfotransferase isoforms (SULT1A1, SULT1A3, SULT1B1 and SULT1E1) and interpret how to interfere with endocrine hormone metabolism. P-nitrophenol(PNP) was utilized as a nonselective probe substrate, and recombinant SULT isoforms were utilized as the enzyme resources. PNP and its metabolite PNP-sulfate were analyzed using a UPLC-UV detecting system. SULT1A1 and SULT1B1 were demonstrated to be the most vulnerable SULT isoforms towards BPs’ inhibition. To determine the inhibition kinetics, 2,4,6-TBP and SULT1A3 were selected as the representative BPs and SULT isoform respectively. The competitive inhibition of 2,4,6-TBP on SULT1A3. The fitting equation was y=90.065x+1466.7, and the inhibition kinetic parameter (Ki) was 16.28 µM. In vitro-in vivo extrapolation (IVIVE) showed that the threshold concentration of 2,4,6-TBP to induce inhibition of SULT1A3 was 1.628 µM. In silico docking, the method utilized indicated that more hydrogen bonds formation contributed to the stronger inhibition of 3,5-DBP than 3-BP. In conclusion, our study gave the full description of the inhibition of BPs towards four SULT isoforms, which may provide a new perspective on the toxicity mechanism of BPs and further explain the interference of BPs on endocrine hormone metabolism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuang Li ◽  
Linhai Zhang ◽  
Nian Wei ◽  
Zhenzhen Tai ◽  
Changyin Yu ◽  
...  

Epilepsy is a common chronic neurological disease that manifests as recurrent seizures. The incidence and prevalence of epilepsy in women are slightly lower than those in men. Polycystic ovary syndrome (PCOS), a reproductive endocrine system disease, is a complication that women with epilepsy are susceptible to, and its total prevalence is 8%–13% in the female population and sometimes as high as 26% in female epilepsy patients. The rate of PCOS increased markedly in female patients who chose valproate (VPA), to 1.95 times higher than that of other drugs. In addition, patients receiving other anti-seizure medications (ASMs), such as lamotrigine (LTG), oxcarbazepine (OXC), and carbamazepine (CBZ), also have reproductive endocrine abnormalities. Some scholars believe that the increase in incidence is related not only to epilepsy itself but also to ASMs. Epileptiform discharges can affect the activity of the pulse generator and then interfere with the reproductive endocrine system by breaking the balance of the hypothalamic–pituitary–ovarian (HPO) axis. ASMs may also cause PCOS-like disorders of the reproductive endocrine system through the HPO axis. Moreover, other factors such as hormone metabolism and related signalling pathways also play a role in it.


2021 ◽  
Author(s):  
Anthony A. Duplanty ◽  
Emily L. Zumbro ◽  
Ryan A. Gordon ◽  
Gena D. Guerin ◽  
Matthew F. Brisebois ◽  
...  

Abstract Background: Exercise is an effective treatment for establishing and maintaining skeletal muscle (SKM) health. The interconnected cascade of gene expression pathways related to myogenesis, mitochondrial homeostasis, and thyroid hormone metabolism are critical to SKM health. This in vitro study was conducted to investigate the effects of exercise mimetic (formoterol) stimulation on human SKM cell signaling during myogenesis, and to provide insight on potential targets for future studies exploring therapies for SKM atrophy.Methods: Human myoblasts were cultured and differentiated to evaluate the effects of exercise mimetic stimulation on gene expression during mid and late myogenesis. We characterized the expression of 24 genes related to myogenesis, mitochondrial biogenesis, thyroid hormone metabolism, and cellular homeostasis.Results: Formoterol stimulated the gene expression for SKM pathways related to mitochondrial biogenesis, thyroid metabolism, and cellular homeostasis. Additionally, formoterol resulted in a myogenic program that appears to favor prolonged myoblast proliferation and delayed myotube maturation.Conclusion: Robust, yet differential effects of exercise mimetic stimulation on gene expression during mid-myogenesis and at terminal differentiation were found. The results of our study support the groundwork for establishing further experiments utilizing exercise signaling as a therapeutic treatment in models targeting dysfunctional SKM cell growth.


2021 ◽  
Vol 22 (21) ◽  
pp. 11808
Author(s):  
Margaux Wieckowski ◽  
Stéphanie Ranga ◽  
Delphine Moison ◽  
Sébastien Messiaen ◽  
Sonia Abdallah ◽  
...  

For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hari Krishnan Krishnamurthy ◽  
Swarnkumar Reddy ◽  
Vasanth Jayaraman ◽  
Karthik Krishna ◽  
Qi Song ◽  
...  

Micronutrients are involved in various vital cellular metabolic processes including thyroid hormone metabolism. This study aimed to investigate the correlation between serum levels of micronutrients and their effects on thyroid parameters. The correlation of serum levels of micronutrients and thyroid markers was studied in a group of 387 healthy individuals tested for thyroid markers (T4, T3, FT4, FT3, TSH, anti-TPO, RT3, and anti-Tg) and their micronutrient profile at Vibrant America Clinical Laboratory. The subjects were rationalized into three groups (deficient, normal, or excess levels of micronutrients), and the levels of their thyroid markers were compared. According to our results, deficiency of vitamin B2, B12, and B9 and Vit-D25[OH] ( p < 0.05 ) significantly affected thyroid functioning. Other elemental micronutrients such as calcium, copper, choline, iron, and zinc ( p < 0.05 ) have a significant correlation with serum levels of free T3. Amino acids asparagine (r = 0.1765, p < 0.001 ) and serine (r = 0.1186, p < 0.05 ) were found to have a strong positive correlation with TSH. Valine, leucine, and arginine ( p < 0.05 ) also exhibited a significant positive correlation with serum levels of T4 and FT4. No other significant correlations were observed with other micronutrients. Our study suggests strong evidence for the association of the levels of micronutrients with thyroid markers with a special note on the effect of serum levels of certain amino acids.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 955
Author(s):  
Jitendra Kumar ◽  
Krishan Mohan Rai ◽  
Shahryar F. Kianian ◽  
Sudhir P. Singh

Susceptible and resistant germplasm respond differently to pathogenic attack, including virus infections. We compared the transcriptome changes between a resistant wheat cultivar, Sonalika, and a susceptible cultivar, WL711, to understand this process in wheat against wheat dwarf India virus (WDIV) infection. A total of 2760 and 1853 genes were differentially expressed in virus-infected and mock-inoculated Sonalika, respectively, compared to WL711. The overrepresentation of genes involved in signaling, hormone metabolism, enzymes, secondary metabolites, proteolysis, and transcription factors was documented, including the overexpression of multiple PR proteins. We hypothesize that the virus resistance in Sonalika is likely due to strong intracellular surveillance via the action of multiple PR proteins (PR1, RAR1, and RPM1) and ChiB. Other genes such as PIP1, LIP1, DnaJ, defensins, oxalate oxidase, ankyrin repeat protein, serine-threonine kinase, SR proteins, beta-1,3-glucanases, and O-methyltransferases had a significant differential expression and play roles in stress tolerance, may also be contributing towards the virus resistance in Sonalika. In addition, we identified putative genes with unknown functions, which are only expressed in response to WDIV infection in Sonalika. The role of these genes could be further validated and utilized in engineering resistance in wheat and other crops.


Author(s):  
Katsuhisa Kurogi ◽  
Yoko Manabe ◽  
Ming-Cheh Liu ◽  
Masahito Suiko ◽  
Yoichi Sakakibara

Abstract Cytosolic sulfotransferase SULT1C subfamily is one of the most flexible gene subfamily during mammalian evolution. The physiological functions of SULT1C enzymes still remain to be fully understood. In this study, common marmoset (Callithrix jacchus), a promising primate animal model, was used to investigate the functional relevance of the SULT1C subfamily. Gene database search revealed three intact SULT1C genes and a pseudogene in its genome. These four genes were named SULT1C1, SULT1C2, SULT1C3P, and SULT1C5, according to the sequence homology and gene location. Since SULT1C5 is the orthologous gene for human SULT1C2P, we propose, here, to revisit the designation of human SULT1C2P to SULT1C5P. Purified recombinant SULT1C enzymes showed sulfating activities toward a variety of xenobiotic compounds and thyroid hormones. Kinetic analysis revealed high catalytic activities of SULT1C1 and SULT1C5 for 3,3’-T2. It appears therefore that SULT1C isoforms may play a role in the thyroid hormone metabolism in common marmoset.


2021 ◽  
pp. 1-6
Author(s):  
Michalopoulou Helena ◽  
◽  
Stamatis Foivos-Konstantinos ◽  

Hypertension (HTN) is one of the major risk factors for almost all cardiovascular diseases including coronary artery disease, stroke, heart failure and renal failure. Nonetheless , blood pressure (BP) regulation is insufficient due to its multifactorial nature involving interactions among genetic, environmental, mechanistic and neuroendocrine factors. Essential hypertension is the most frequent diagnosis indicating that a monocausal etiology has not been identified. The identification of causal genetic determinants has been unfulfilling. Analyses of rare monogenic syndromes of HTN focusing on renal sodium handling and steroid hormone metabolism have proved the well-defined genetic frame of hypertension though they do not affect the normal distribution of BP in the general population. Genome-wide association studies (GWAS) have revealed genetic variants that are associated with BP with small effect size which cumulatively explain to a very small extend the variability of BP. New large-scale studies in the genomic arena will clarify the polygenic determinants of BP and open a perspective on translation of the progression in BP genetics to clinical use


Sign in / Sign up

Export Citation Format

Share Document