Salt tolerance in Argentine wheatgrass is related to shoot sodium exclusion

Crop Science ◽  
2020 ◽  
Vol 60 (5) ◽  
pp. 2437-2451
Author(s):  
Juan M. Zabala ◽  
Lorena del R. Marinoni ◽  
Edith L. Taleisnik ◽  
Gustavo Ribero ◽  
Gustavo E. Schrauf
PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49800 ◽  
Author(s):  
Yanjie Xie ◽  
Yu Mao ◽  
Diwen Lai ◽  
Wei Zhang ◽  
Wenbiao Shen

Crop Science ◽  
1991 ◽  
Vol 31 (4) ◽  
pp. 992-997 ◽  
Author(s):  
D. P. Schachtman ◽  
Ranna Munns ◽  
M. I. Whitecross

2004 ◽  
Vol 31 (11) ◽  
pp. 1105 ◽  
Author(s):  
Megan P. Lindsay ◽  
Evans S. Lagudah ◽  
Ray A. Hare ◽  
Rana Munns

Salinity affects durum wheat [Triticum turgidum L. ssp. durum (Desf.)] more than it affects bread wheat (Triticum aestivum L.), and results in lower yield for durum wheat cultivars grown on salt-affected soils. A novel source of salt tolerance in the form of a sodium exclusion trait, identified previously in a screen of tetraploid wheat germplasm, was mapped using a QTL approach. The trait, measured as low Na+ concentration in the leaf blade, was mapped on a population derived from a cross between the low Na+ landrace and the cultivar Tamaroi. The use of AFLP, RFLP and microsatellite markers identified a locus, named Nax1 (Na exclusion), on chromosome 2AL, which accounted for approximately 38% of the phenotypic variation in the mapping population. Markers linked to the Nax1 locus also associated closely with low Na+ progeny in a genetically unrelated population. A microsatellite marker closely linked to the Nax1 locus was validated in genetically diverse backgrounds, and proven to be useful for marker-assisted selection in a durum wheat breeding program.


2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


2017 ◽  
Vol 16 (3) ◽  
pp. 109-118 ◽  
Author(s):  
Irfan Afzal ◽  
Abdul Rahim ◽  
Muhammad Qasim ◽  
Adnan Younis ◽  
Aamir Nawaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document