Flow cytometric quantification of intraperitoneal free tumor cells (FTC) in patients with peritoneal metastasis

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Joji Kitayama ◽  
Shigenobu Emoto ◽  
Hironori Yamaguchi ◽  
Hironori Ishigami ◽  
Takao Kamei ◽  
...  
2014 ◽  
Vol 22 (7) ◽  
pp. 2336-2342 ◽  
Author(s):  
Joji Kitayama ◽  
Shigenobu Emoto ◽  
Hironori Yamaguchi ◽  
Hironori Ishigami ◽  
Haruna Onoyama ◽  
...  

2019 ◽  
Vol 10 (08) ◽  
pp. 708-715
Author(s):  
Dimitrios-Athanasios Ntanovasilis ◽  
Panagiotis Apostolou ◽  
Ioannis Papasotiriou

Oncology ◽  
2002 ◽  
Vol 62 (2) ◽  
pp. 128-135 ◽  
Author(s):  
W. Zoli ◽  
F. Barzanti ◽  
M. Dal Susino ◽  
F. De Paola ◽  
A. Tesei ◽  
...  

2002 ◽  
Vol 20 (3) ◽  
pp. 340-347 ◽  
Author(s):  
Ruth L. Loveday ◽  
Valerie Speirs ◽  
Philip J. Drew ◽  
Michael J. Kerin ◽  
John R. T. Monson ◽  
...  

Cytometry ◽  
1991 ◽  
Vol 12 (8) ◽  
pp. 731-742 ◽  
Author(s):  
Awtar Krishan ◽  
Antonieta Sauerteig ◽  
Jeanne H. Stein

2019 ◽  
Vol 39 (3) ◽  
pp. 338-354 ◽  
Author(s):  
JM Serpeloni ◽  
AFL Specian ◽  
DL Ribeiro ◽  
LM Benício ◽  
HL Nunes ◽  
...  

Fridericia platyphylla (Cham.) L.G. Lohmann (FP) has cytotoxic, anti-inflammatory, and analgesic properties. We aimed to characterize the cytotoxic and antiproliferative effects of FP extract on normal (GAS) and tumor-derived (ACP02 and HepG2) cell lines. The effective concentrations (EC50s) by tetrazolium bromide assay (MTT) were 56.16, 43.68, and 42.57 µg mL−1 and 69.38, 41.73, and 52.39 µg mL−1 by neutral red assay for GAS, ACP02, and HepG2 cells, respectively. The extract decreased nuclear division indices, which was not reflected in cell proliferation curves. Flow cytometric analyses showed that even 30 µg mL−1 extract (shown to be noncytotoxic by MTT assay) increased the sub-G1 population, indicating cell death due to apoptosis and necrosis. A cytokinesis-block micronucleus cytome assay showed that 30 µg mL−1 of the extract increased the frequency of nuclear buds in tumor cells. Real-time quantitative polymerase chain reaction showed CCND1 upregulation in doxorubicin-treated GAS cells and BCL-XL, BIRC5, and MET downregulation in 5 or 30 µg mL−1 in FP extract-treated ACP02 cells. In conclusion, FP extract modulated apoptosis- and cell cycle-related genes and presented selective cytotoxicity toward tumor cells that deserves further investigation by testing other cell types. Our results demonstrated that even medicinal plants exert adverse effects depending on the extract concentrations used and tissues investigated.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4205-4205
Author(s):  
Zandra K. Klippel ◽  
Jeffrey Chou ◽  
Andrea M. H. Towlerton ◽  
Paul F Robbins ◽  
Lilien Voong ◽  
...  

Abstract Introduction Adoptive immunotherapy is an increasingly effective modality of cancer therapy. The ability to redirect the antigenic specificity of patient-derived T cells toward autologous tumor cells through introduction of T-cell receptors (TCRs) or chimeric antigen receptors (CARs) enables reproducible manufacturing of tumor-reactive T cell products even in patients who carry few, if any, tumor-reactive T cells in their peripheral blood repertoire. We present the results of our pre-clinical studies of adoptive therapy with T cells transduced with a retroviral vector that encodes an enhanced-affinity (a95:LY) variant of the HLA-A*02:01-restricted, NY-ESO-1157-165-specific 1G4 TCR to redirect CD8+ T cells from HLA-A*02:01+ multiple myeloma patients to HLA-A*02:01+, NY-ESO-1-expressing myeloma cells. Methods CD3-stimulated peripheral blood mononuclear cells from HLA-A*02:01+ multiple myeloma patients were retrovirally transduced with the NY-ESO-1157-165-specific 1G4 a95:LY TCR. CD8+ TCR-transduced cells were isolated by flow cytometric sorting with a NY-ESO-1157-165/HLA-A*02:01 tetramer. The cytolytic activity of CD8+tetramer+ cells was evaluated by 51Cr release assay using as target cells the multiple myeloma cell lines U266 (HLA-A*02:01+ NY-ESO-1+) and UM-9 (HLA-A*02:01- NY-ESO-1+), and T2 cells with or without exogenous NY-ESO-1157-165 peptide. The U266 cell line was stably transduced with luciferase-containing retrovirus and used to develop a xenograft model of diffuse myeloma in NOD/scid/IL-2Rg-null (NSG) mice in order to evaluate the anti-myeloma activity of adoptive therapy with CD8+ TCR-transduced T cells. Mice that received TCR-transduced CD8+cells and developed disease were sacrificed, and human CD138+ cells were harvested from marrow and other sites for evaluation by flow cytometry, HLA-A typing, NY-ESO-1 expression, and loss of heterozygosity (LOH) analysis of the Major Histocompatibility Complex (MHC) on chromosome 6 with short tandem repeat (STR) probes to determine the mechanism of immune escape. Results CD8+ TCR-transduced cells were specifically cytolytic against HLA-A*02:01+, NY-ESO-1+ tumor cells. Intravenous injection of luciferase-transduced U266/Luc in sub-lethally irradiated NSG mice led to the development of a multiple myeloma-like disease. Mice that received U266/Luc without T cells (control) developed progressive disease within 2 weeks, and met criteria for euthanasia by week 9. Mice that received U266/Luc with sham-transduced cells developed myeloma more slowly, yet all met criteria for euthanasia by week 18 after U266/Luc injection. Of the 6 mice that received U266/Luc and NY-ESO-1-specific TCR-transduced CD8+ T cells, 4 did not have any evidence of myeloma by bioluminescence at the end of study (week 18), and 2 had low burden disease at that point. Kaplan-Meier survival analysis demonstrated significant improvement of overall survival in the mice that received TCR-transduced T cells (Log-rank test p< 0.0001). Flow cytometric analysis of human CD138+ cells isolated from the 2 mice that developed myeloma despite adoptive therapy with NY-ESO-1-specific T cells demonstrated selective loss of surface HLA-A*02 expression, with preserved expression of other MHC class I molecules. Real-time PCR analysis also confirmed preserved expression of HLA-A, B2M, and NY-ESO-1. Low resolution HLA-A typing of genomic DNA from myeloma cells from these 2 mice revealed loss of HLA-A*02, but retention of HLA-A*03. LOH analysis using 7 STR markers mapping to the MHC on chromosome 6p21.3 and 2 markers on chromosome 15 (control) demonstrated LOH in the MHC involving the HLA-A locus in myeloma cells from both of the mice that developed disease despite TCR-transduced T cells. The extent of LOH in the myeloma cells from the 2 mice was distinct. Conclusions LOH in the MHC as a mechanism of immune scape has been described in allogeneic transplantation for AML, but has not been described in multiple myeloma. We identified LOH affecting the HLA-A allele targeted by adoptively transferred TCR-transduced T cells. Given that NY-ESO-1-specific TCR-transduced cells have recently entered clinical testing, this mechanism of immune escape should be evaluated in patients that fail therapy despite persistence of adoptively transferred T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5231-5231
Author(s):  
Akihiro Tamura ◽  
Daiichiro Hasegawa ◽  
Suguru Uemura ◽  
Atsuro Saito ◽  
Emiko Takeoka ◽  
...  

Abstract INTRODUCTION: Congenital pure erythroid leukemia (M6b) is exceedingly rare with only a few reported cases to date. Because of the extreme rarity, almost nothing is known about the pathogenesis, appropriate therapy and prognosis. Diagnosis of erythroid leukemia is usually based on the positivity for Glycophorin A, Glycophorin C or PAS staining. We report a first case of congenital pure erythroid leukemia expressing E-cadherin in the absence of Glycophorin A, Glycophorin C and PAS staining. We analyzed the cytogenetic abnormalities of this extremely rare disease. RESULTS: The patient was the first daughter of healthy and non-consanguineous Japanese parents, born at 40 weeks of gestation by emergency cesarean section in non-reassuring fetal state after uncomplicated pregnancy. Apgar score was 8/9. Characteristic facial appearance was not recognized. At birth, she presented with marked hepatomegaly, purpura and disseminated intravascular coagulation. White blood cell (WBC) count was 63.5x109/L with blastic cells with vacuoles. Although congenital leukemia was suspected, flow cytometric analyses using CD45 blast gating failed to demonstrate leukemic cells. Karyotype was 46, XX. Fluorescence in situ hybridization (FISH) for trisomy 21 and MLL split signal were negative. GATA1 mutation was not detected. WBC count has gradually decreased within 3-4 weeks with supportive care.However, liver failure, hemophagocytic lymphohistiocytosis and schistocytosis developed. Although treatment with dexamethasone and etoposide has started, multiple nodules appeared in the liver 11 weeks after birth. Liver biopsy demonstrated small round cell tumor with high N/C ratio and vacuoles infiltrating the liver. The tumor cells were immunohistochemically positive for CD43, CD71, E-cadherin, beta-catenin, Ki-67 and c-Myc and negative for CD45, CD20, CD10, PAX5, CD3, CD4, CD8, TdT, CD1a, CD34, CD56, cyMPO, c-kit, CD42b, CD61, Glycophorin A, Glycophorin C, tyrosine hydroxylase, PGP9.5, myogenin, glypican3, NKX2.2, CAM5.2 and Periodic Acid Schiff (PAS) staining etc. Flow cytometric analysis revealed CD43+ CD71+ CD36+ CD58+ cells within large CD45 negative cell population. These cells expressed almost no other hematopoietic cell markers used to screen for leukemia. These cells were indistinguishable from normal erythroblast based on surface markers only. However, flow cytometric cell sorting revealed these cells are blasts with vacuoles. Karyotype of tumor cells has changed to 50, XX, +7, +8, add(15)(q22), +19, add(19)(q13.1-13.3)×2, +21. Based on these results, she was diagnosed with pure erythroid leukemia. Low dose Cytosine Arabinoside improved her clinical symptoms. She is alive at 5 months of age. DISCUSSION: E-cadherin is a selective marker of immature erythroblast. In our case, E-cadherin was key in erythroid lineage assignment. To our knowledge, this is the first reported case of infantile pure erythroid leukemia expressing E-cadherin in the absence of Glycophorin A, Glycophorin C and PAS staining. These results suggest that the tumor cells originated from undifferentiated erythroblast. This disease entity should be recognized. Immunohistochemical staining of c-Myc showed strong positivity. The c-Myc gene is located on chromosome 8. FISH for c-Myc split signal was negative. G-banding and FISH revealed trisomy 8. Overexpression of c-Myc may be involved in the pathogenesis of this undifferentiated pure erythroid leukemia. At birth, karyotype was 46, XX and blasts in peripheral blood decreased with supportive care only. However, we observed changes in karyotype of blasts. We assume that second hit was added during clinical course. Whole exome sequencing analysis is in progress to reveal somatic and germline mutations underlying this unrecognized disease. Disclosures No relevant conflicts of interest to declare.


Oncology ◽  
1995 ◽  
Vol 52 (2) ◽  
pp. 116-122 ◽  
Author(s):  
Masahide Ikeguchi ◽  
Akira Kondou ◽  
Atsuo Oka ◽  
Shunichi Tsujitani ◽  
Michio Maeta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document