Influence of developmental nicotine exposure on serotonergic control of breathing‐related motor output

Author(s):  
Lila Wollman ◽  
Andrew Hill ◽  
Brady Hasse ◽  
Christina Young ◽  
Giovanni Hernandez‐De La Pena ◽  
...  
2016 ◽  
Vol 311 (4) ◽  
pp. R727-R734
Author(s):  
Joanne Avraam ◽  
Kevin J. Cummings ◽  
Peter B. Frappell

Among numerous studies, perinatal nicotine exposure (PN) has had variable effects on respiratory control in the neonatal period. The effects of acute nicotine exposure on breathing are largely mediated by α4-containing nicotine acetylcholine receptors (nAChRs). These receptors are also involved in thermoregulatory responses induced by both acetylcholine and nicotine. We therefore hypothesized that α4-containing nAChRs would mediate the effects of PN on the metabolic and ventilatory responses of neonates to modest cold exposure. Wild-type (WT) and α4 knockout (KO) mice were exposed to 6 mg·kg−1·day−1 nicotine or vehicle from embryonic day 14. At postnatal day (P) 7 mice were cooled from an ambient temperature (TA) of 32 to 20°C. Body temperature (TB), rate of O2 consumption (V̇o2), ventilation (V̇e), respiratory frequency (FB), and tidal volume (VT) were continually monitored. An absence of α4 had no effect on the metabolic response to ambient cooling. Surprisingly, PN selectively increased the metabolic response of KO pups to cooling. Regardless, KO pups became hypothermic to the same degree as WT pups, and for both genotypes the drop in TB was exacerbated by PN. PN led to hyperventilation in WT pups caused by an increase in VT, an effect that was absent in α4 KO littermates. We show that PN interacts with α4-containing nAChRs in unique ways to modulate the control of breathing and thermoregulation in the early postnatal period.


2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


Pneumologie ◽  
2010 ◽  
Vol 64 (01) ◽  
Author(s):  
J Antosiewicz ◽  
M Walski ◽  
M Pokorski

2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
ME Schläfke ◽  
C Zumfelde ◽  
B Luka ◽  
T Schäfer ◽  
W Greulich

Sign in / Sign up

Export Citation Format

Share Document