scholarly journals Homocysteine enhances cardiac neural crest cell attachment in vitro by increasing intracellular calcium levels

2008 ◽  
Vol 237 (8) ◽  
pp. 2117-2128 ◽  
Author(s):  
David J. Heidenreich ◽  
Mark V. Reedy ◽  
Philip R. Brauer
1993 ◽  
Vol 106 (4) ◽  
pp. 1357-1368 ◽  
Author(s):  
R. Perris ◽  
J. Syfrig ◽  
M. Paulsson ◽  
M. Bronner-Fraser

We have examined the mechanisms involved in the interaction of avian neural crest cells with collagen types I and IV (Col I and IV) during their adhesion and migration in vitro. For this purpose native Col IV was purified from chicken tissues, characterized biochemically and ultrastructurally. Purified chicken Col I and Col IV, and various proteolytic fragments of the collagens, were used in quantitative cell attachment and migration assays in conjunction with domain-specific collagen antibodies and antibodies to avian integrin subunits. Neural crest cells do not distinguish between different macromolecular arrangements of Col I during their initial attachment, but do so during their migration, showing a clear preference for polymeric Col I. Interaction with Col I is mediated by the alpha 1 beta 1 integrin, through binding to a segment of the alpha 1(I) chain composed of fragment CNBr3. Neural crest cell attachment and migration on Col IV involves recognition of conformation-dependent sites within the triple-helical region and the noncollagenous, carboxyl-terminal NC1 domain. This recognition requires integrity of inter- and intrachain disulfide linkages and correct folding of the molecule. Moreover, there also is evidence that interaction sites within the NC1 domain may be cryptic, being exposed during migration of the cells in the intact collagen as a result of the prolonged cell-substratum contact. In contrast to Col I, neural crest cell interaction with Col IV is mediated by beta 1-class integrins other than alpha 1 beta 1.


1981 ◽  
Vol 82 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Jeanne Loring ◽  
Bengt Glimelius ◽  
Carol Erickson ◽  
James A. Weston

2018 ◽  
Vol 247 (12) ◽  
pp. 1286-1296 ◽  
Author(s):  
Kimberly E. Inman ◽  
Carlo Donato Caiaffa ◽  
Kristin R. Melton ◽  
Lisa L. Sandell ◽  
Annita Achilleos ◽  
...  

Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1069-1084 ◽  
Author(s):  
T. Lallier ◽  
M. Bronner-Fraser

The mechanisms of neural crest cell interaction with laminin were explored using a quantitative cell attachment assay. With increasing substratum concentrations, an increasing percentage of neural crest cells adhere to laminin. Cell adhesion at all substratum concentrations was inhibited by the CSAT antibody, which recognizes the chick beta 1 subunit of integrin, suggesting that beta 1-integrins mediate neural crest cell interactions with laminin. The HNK-1 antibody, which recognizes a carbohydrate epitope, inhibited neural crest cell attachment to laminin at low coating concentrations (greater than 1 microgram ml-1; Low-LM), but not at high coating concentration of laminin (10 micrograms ml-1; High-LM). Attachment to Low-LM occurred in the absence of divalent cations, whereas attachment to High-LM required greater than 0.1 mM Ca2+ or Mn2+. Neural crest cell adherence to the E8 fragment of laminin, derived from its long arm, was similar to that on intact laminin at high and low coating concentrations, suggesting that this fragment contains the neural crest cell binding site(s). The HNK-1 antibody recognizes a protein of 165,000 Mr which is also found in immunoprecipitates using antibodies against the beta 1 subunit of integrin and is likely to be an integrin alpha subunit or an integrin-associated protein. Our results suggest that the HNK-1 epitope on neural crest cells is present on or associated with a novel or differentially glycosylated form of beta 1-integrin, which recognizes laminin in the apparent absence of divalent cations. We conclude that neural crest cells have at least two functionally independent means of attachment to laminin which are revealed at different substratum concentrations and/or conformations of laminin.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Cell Reports ◽  
2019 ◽  
Vol 29 (3) ◽  
pp. 603-616.e5
Author(s):  
Hiroyuki N. Arai ◽  
Fuminori Sato ◽  
Takuya Yamamoto ◽  
Knut Woltjen ◽  
Hiroshi Kiyonari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document