scholarly journals Volatilome of Aleppo Pine litter over decomposition process

2021 ◽  
Author(s):  
Justine Viros ◽  
Mathieu Santonja ◽  
Brice Temime‐Roussel ◽  
Henri Wortham ◽  
Catherine Fernandez ◽  
...  
2010 ◽  
Vol 130 (11) ◽  
pp. 1004-1008
Author(s):  
Shinobu Hayashi ◽  
Kohki Satoh ◽  
Hidenori Itoh

2014 ◽  
Vol 10 ◽  
pp. 113-121
Author(s):  
Mateusz Wilk ◽  
Julia Pawłowska ◽  
Marta Wrzosek ◽  
Michał Gorczak ◽  
Małgorzata Suska-Malawska

During a 35-month study on the decomposition of Sphagnum moss litter in poor fen and pine bog forest, an intensive colonization of litter-bags by mycorrhizal roots was observed during the decomposition process. Content of mycorrhizal roots in litter-bags, expressed as % mass of roots, was generally increasing during the decomposition in pine bog forest, and fluctuating during decomposition on poor fen, although in both cases the results were statistically insignificant. Two morphotypes of ericoid roots and two morphotypes of ectomycorrhizal roots were recorded from litter-bags on poor fen during the decomposition experiment, while in pine bog forest one morphotype of ericoid and nine morphotypes of ectomycorrhizal roots were recorded. Molecular identification of mycorrhizal roots succeeded only in the case of one ericoid and six putatively ectomycorrhizal morphotypes. Most morphotypes were recorded only once during the whole 35-month decomposition period, and only one ericoid and one ectomycorrhizal morphotypes were shared between the poor fen and pine bog forest communities.


2001 ◽  
Vol 27 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Andreas Papadopoulos ◽  
Françoise Serre-Bachet ◽  
Lucien Tessier

Author(s):  
K. Sangeetha ◽  
S. Sweetline Shamini ◽  
R. Lakshmi Devi

2021 ◽  
pp. 002199832199087
Author(s):  
Hussain Najmi ◽  
Jocelyn Luche ◽  
Thomas Rogaume

Multilayer composite materials are frequently used in aircraft interiors. Even though they have high properties (such as physical, chemical and mechanical properties), their application is limited due to lack of knowledge of their decomposition process and on the interaction between different layers in fire. In the present work, two types of composites with 3 and 4 layers are studied. The fire characterization of multilayer composite is studied in 3 different phases using ISO-5660 cone calorimeter at two heat fluxes (35 and 50 kW.m−2). Phase-I mainly concentrates on the decomposition of single layer materials (paint, laminate and honeycomb) while in phase-II and phase-III, different assemblies are formed using a single layer material and studied in the same experimental configuration. In all the three phases, back surface temperatures of the materials or assemblies are measured and analyzed with different gas productions which allow to understand the dynamics of the decomposition process. The finding from the cone calorimeter study suggests that the ignition primarily depends on the top layer behavior of the composite. The permeability analysis on the top layer of the composite confirms that decomposed layer of paint offers more resistance to the volatile gases escaping from the composite. At the end of the study, thermal conductivity is determined and the ignition temperature of both the composite is determined.


2010 ◽  
Vol 46 (2) ◽  
pp. 343-351 ◽  
Author(s):  
Ricardo Alves ◽  
Thaís Vitória da Silva Reis ◽  
Luis Carlos Cides da Silva ◽  
Silvia Storpírtis ◽  
Lucildes Pita Mercuri ◽  
...  

The thermal behavior of two polymorphic forms of rifampicin was studied by DSC and TG/DTG. The thermoanalytical results clearly showed the differences between the two crystalline forms. Polymorph I was the most thermally stable form, the DSC curve showed no fusion for this species and the thermal decomposition process occurred around 245 ºC. The DSC curve of polymorph II showed two consecutive events, an endothermic event (Tpeak = 193.9 ºC) and one exothermic event (Tpeak = 209.4 ºC), due to a melting process followed by recrystallization, which was attributed to the conversion of form II to form I. Isothermal and non-isothermal thermogravimetric methods were used to determine the kinetic parameters of the thermal decomposition process. For non-isothermal experiments, the activation energy (Ea) was derived from the plot of Log β vs 1/T, yielding values for polymorph form I and II of 154 and 123 kJ mol-1, respectively. In the isothermal experiments, the Ea was obtained from the plot of lnt vs 1/T at a constant conversion level. The mean values found for form I and form II were 137 and 144 kJ mol-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document