scholarly journals Plastic responses of survival and fertility following heat stress in pupal and adult Drosophila virilis

2021 ◽  
Author(s):  
Benjamin S. Walsh ◽  
Steven R. Parratt ◽  
Natasha L. M. Mannion ◽  
Rhonda R. Snook ◽  
Amanda Bretman ◽  
...  
2019 ◽  
Vol 22 (8) ◽  
pp. 1090-1096
Author(s):  
E. K. Karpova ◽  
I. Yu. Rauschenbach ◽  
N. E. Gruntenko

One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (R­individuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NR­individuals). The study of reproductive characteristics of R­ and NR­individuals showed that under normal conditions R­individuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NR­individuals die, but if its intensity is low, then they, unlike R­individuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R­ and NR­alleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the ftness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.


2019 ◽  
Vol 22 (8) ◽  
pp. 1090-1096
Author(s):  
E. K. Karpova ◽  
I. Yu. Rauschenbach ◽  
N. E. Gruntenko

One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (R­individuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NR­individuals). The study of reproductive characteristics of R­ and NR­individuals showed that under normal conditions R­individuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NR­individuals die, but if its intensity is low, then they, unlike R­individuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R­ and NR­alleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the ftness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.


1995 ◽  
Vol 41 (3) ◽  
pp. 279-286 ◽  
Author(s):  
I.Y. Rauschenbach ◽  
L.V. Shumnaya ◽  
T.M. Khlebodarova ◽  
N.A. Chentsova ◽  
L.G. Grenback

1997 ◽  
Vol 27 (8-9) ◽  
pp. 729-734 ◽  
Author(s):  
I.Yu. Rauschenbach ◽  
M.Jh. Sukhanova ◽  
L.V. Shumnaya ◽  
N.E. Gruntenko ◽  
L.G. Grenback ◽  
...  

Author(s):  
Benjamin Walsh ◽  
Steven Parratt ◽  
Natasha Mannion ◽  
Rhonda Snook ◽  
Amanda Bretman ◽  
...  

The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages, are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life-history stage impacts fertility. We then tested the capacity for heat-hardening to mitigate heat-induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but lose the ability to produce offspring. We also found evidence that while heat-hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat-hardening which limits a species’ ability to quickly and effectively reduce fertility loss in the face of short-term high temperature events.


2015 ◽  
Vol 19 (6) ◽  
pp. 1-7
Author(s):  
E. K. Karpova ◽  
I. Yu. Rauschenbach ◽  
N. E. Gruntenko

One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (R-individuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NR-individuals). The study of reproductive characteristics of R- and NR-individuals showed that under normal conditions R-individuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NR-individuals die, but if its intensity is low, then they, unlike R-individuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R- and NR-alleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the fitness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.


1993 ◽  
Vol 39 (9) ◽  
pp. 761-767 ◽  
Author(s):  
I.Y. Rauschenbach ◽  
L.I. Serova ◽  
I.S. Timochina ◽  
N.A. Chentsova ◽  
L.V. Schumnaja

2003 ◽  
Vol 12 (4) ◽  
pp. 393-404 ◽  
Author(s):  
N. E. Gruntenko ◽  
M. Bownes ◽  
J. Terashima ◽  
M. Zh. Sukhanova ◽  
I. Yu Raushenbach

Sign in / Sign up

Export Citation Format

Share Document