scholarly journals Plastic responses of survival and fertility following heat stress in pupal and adult Drosophila virilis

Author(s):  
Benjamin Walsh ◽  
Steven Parratt ◽  
Natasha Mannion ◽  
Rhonda Snook ◽  
Amanda Bretman ◽  
...  

The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages, are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life-history stage impacts fertility. We then tested the capacity for heat-hardening to mitigate heat-induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but lose the ability to produce offspring. We also found evidence that while heat-hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat-hardening which limits a species’ ability to quickly and effectively reduce fertility loss in the face of short-term high temperature events.

2021 ◽  
Vol 23 (1) ◽  
pp. 342
Author(s):  
Iwona Sadura ◽  
Anna Janeczko

Cereals, which belong to the Poaceae family, are the most economically important group of plants. Among abiotic stresses, temperature stresses are a serious and at the same time unpredictable problem for plant production. Both frost (in the case of winter cereals) and high temperatures in summer (especially combined with a water deficit in the soil) can result in significant yield losses. Plants have developed various adaptive mechanisms that have enabled them to survive periods of extreme temperatures. The processes of acclimation to low and high temperatures are controlled, among others, by phytohormones. The current review is devoted to the role of brassinosteroids (BR) in cereal acclimation to temperature stress with special attention being paid to the impact of BR on photosynthesis and the membrane properties. In cereals, the exogenous application of BR increases frost tolerance (winter rye, winter wheat), tolerance to cold (maize) and tolerance to a high temperature (rice). Disturbances in BR biosynthesis and signaling are accompanied by a decrease in frost tolerance but unexpectedly an improvement of tolerance to high temperature (barley). BR exogenous treatment increases the efficiency of the photosynthetic light reactions under various temperature conditions (winter rye, barley, rice), but interestingly, BR mutants with disturbances in BR biosynthesis are also characterized by an increased efficiency of PSII (barley). BR regulate the sugar metabolism including an increase in the sugar content, which is of key importance for acclimation, especially to low temperatures (winter rye, barley, maize). BR either participate in the temperature-dependent regulation of fatty acid biosynthesis or control the processes that are responsible for the transport or incorporation of the fatty acids into the membranes, which influences membrane fluidity (and subsequently the tolerance to high/low temperatures) (barley). BR may be one of the players, along with gibberellins or ABA, in acquiring tolerance to temperature stress in cereals (particularly important for the acclimation of cereals to low temperature).


2012 ◽  
Vol 63 (5) ◽  
pp. 419 ◽  
Author(s):  
V. Devasirvatham ◽  
D. K. Y. Tan ◽  
P. M. Gaur ◽  
T. N. Raju ◽  
R. M. Trethowan

Chickpea (Cicer arietinum L.) is an important food legume and heat stress affects chickpea ontogeny over a range of environments. Generally, chickpea adapts to high temperatures through an escape mechanism. However, heat stress during reproductive development can cause significant yield loss. The most important effects on the reproductive phase that affect pod set, seed set and yield are: (1) flowering time, (2) asynchrony of male and female floral organ development, and (3) impairment of male and female floral organs. While this review emphasises the importance of high temperatures >30°C, the temperature range of 32–35°C during flowering also produces distinct effects on grain yield. Recent field screening at ICRISAT have identified several heat-tolerant germplasm, which can be used in breeding programs for improving heat tolerance in chickpea. Research on the impact of heat stress in chickpea is not extensive. This review describes the status of chickpea production, the effects of high temperature on chickpea, and the opportunities for genetic improvement of chickpea tolerance to high temperatures.


2021 ◽  
Author(s):  
Benjamin S Walsh ◽  
Steven R Parratt ◽  
Rhonda R Snook ◽  
Amanda Bretman ◽  
David Atkinson ◽  
...  

Recently, it has been demonstrated that heat-induced male sterility is likely to shape population persistence as climate change progresses. However, an under-explored possibility is that females may be able to successfully store and preserve sperm at temperatures that sterilise males, which could ameliorate the impact of male infertility on populations. Here, we test whether females from two fruit fly species can protect stored sperm from a high temperature stress. We find that sperm carried by female Drosophila virilis are almost completely sterilised by high temperatures, whereas sperm carried by female Zaprionus indianus show only slightly reduced fertility. Heat-shocked D. virilis females can recover fertility when allowed to remate, suggesting that the delivered heat-shock is destroying stored sperm and not directly damaging females in this species. The temperatures required to reduce fertility of mated females are substantially lower than the temperatures required to destroy mature sperm in males, suggesting that females are worse than males at protecting mature sperm. This suggests that female sperm storage is unlikely to ameliorate the impacts of high temperature fertility losses in males, and instead exacerbates fertility costs of high temperatures, representing an important determinant of population persistence during climate change.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1099
Author(s):  
Hongyin Qi ◽  
Dingfan Kang ◽  
Weihang Zeng ◽  
Muhammad Jawad Hassan ◽  
Yan Peng ◽  
...  

Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal value, but is sensitive to temperatures above 30 °C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants under high-temperature stress. Our results reveal that improvement in endogenous GABA level in leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss. The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic acid–glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature, and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in roots, which could help to improve the water transportation and homeostasis from roots to leaves. In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid level could improve the heat dissipation capacity through maintaining higher stomatal opening and transpiration in white clovers under high-temperature stress.


1975 ◽  
Vol 84 (3) ◽  
pp. 525-528 ◽  
Author(s):  
I. C. Onwueme ◽  
S. A. Adegoroye

SUMMARYSeeds of Amaranthus, melon, cowpea and tomato were planted in moist soil at 1, 4 or 7·5 cm depth and subjected to a heat stress of 45 °C for 10 h on the day of sowing (day 0), 1 day after sowing or 2 days after sowing. Seedling emergence was retarded by heat stress, the most drastic retardation being due to heat stress on day 1 for cowpea and tomato, day 2 for melon, and day 0 for Amaranthus. Emergence also decreased with increasing depth of sowing. The interaction of depth and heat stress was also significant in all cases, such that the delay in emergence due to heat stress tended to be greater with increasing depth of sowing. The agronomic significance of the results is discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chaoyue Wen ◽  
Siyu Li ◽  
Jiaojiao Wang ◽  
Yimin Zhu ◽  
Xin Zong ◽  
...  

BackgroundHeat stress has negative effects on the intestinal health of humans and animals. However, the impact of heat stress on intestinal microbial and metabolic changes remains elusive. Here, we investigated the cecal microbial and metabolic profiles in mice in response to heat stress.MethodsThe mouse heat stress model was constructed by simulating a high-temperature environment. Twenty mice were randomly assigned to two groups, the control group (CON, 25°C) and the heat treatment group (HS, 40°C from 13:00 to 15:00 every day for 7 days). Serum and cecal contents were collected from the mice for serum biochemical analysis, 16S rRNA high-throughput sequencing, and non-targeted metabolomics.ResultsBoth core body temperature and water intake were significantly increased in the HS group. Serum biochemical indicators were also affected, including significantly increased triglyceride and decreased low-density lipoprotein in the heat stress group. The composition and structure of intestinal microbiota were remarkably altered in the HS group. At the species level, the relative abundance of Candidatus Arthromitus sp. SFB-mouse-Japan and Lactobacillus murinus significantly reduced, while that of Lachnospiraceae bacterium 3-1 obviously increased after HS. Metabolomic analysis of the cecal contents clearly distinguished metabolite changes between the groups. The significantly different metabolites identified were mainly involved in the fatty acid synthesis, purine metabolism, fatty acid metabolism, cyanoamino acid metabolism, glyceride metabolism, and plasmalogen synthesis.ConclusionIn summary, high temperature disrupted the homeostatic balance of the intestinal microbiota in mice and also induced significant alterations in intestinal metabolites. This study provides a basis for treating intestinal disorders caused by elevated temperature in humans and animals and can further formulate nutritional countermeasures to reduce heat stress-induced damage.


2020 ◽  
Author(s):  
S MukeshSankar ◽  
C. Tara Satyavathi ◽  
Sharmistha Barthakur ◽  
S.P Singh ◽  
Roshan Kumar ◽  
...  

AbstractEnvironmental stresses negatively influence survival, biomass and grain yield of most crops. Towards functionally clarifying the role of heat responsive genes in Pearl millet under high temperature stress, the present study were carried out using semi quantitative RT- PCR for transcript expression profiling of hsf and hsps in 8 different inbred lines at seedling stage, which was earlier identified as thermo tolerant/susceptible lines through initial screening for thermo tolerance using membrane stability index among 38 elite genotypes. Transcript expression pattern suggested existence of differential response among different genotypes in response to heat stress in the form of accumulation of heat shock responsive gene transcripts. Genotypes WGI 126, TT-1 and MS 841B responded positively towards high temperature stress for transcript accumulation for both Pgcp 70 and Pghsf and also had better growth under heat stress, whereas PPMI 69 showed the least responsiveness to transcript induction supporting the membrane stability index data for scoring thermotolerance, suggesting the efficacy of transcript expression profiling as a molecular based screening technique for identification of thermotolerant genes and genotypes at particular crop growth stages. As to demonstrate this, a full length cDNA of Pghsp 16.97 was cloned from the thermotolerant cultivar, WGI 126 and characterized for thermotolerance. The results of demonstration set forth the transcript profiling for heat tolerant genes can be a very useful technique for high throughput screening of tolerant genotypes at molecular level from large cultivar collections at seedling stage.


2014 ◽  
Vol 778-780 ◽  
pp. 903-906 ◽  
Author(s):  
Kevin Matocha ◽  
Kiran Chatty ◽  
Sujit Banerjee ◽  
Larry B. Rowland

We report a 1700V, 5.5mΩ-cm24H-SiC DMOSFET capable of 225°C operation. The specific on-resistance of the DMOSFET designed for 1200V applications is 8.8mΩ-cm2at 225°C, an increase of only 60% compared to the room temperature value. The low specific on-resistance at high temperatures enables a smaller die size for high temperature operation. Under a negative gate bias temperature stress (BTS) at VGS=-15 V at 225°C for 20 minutes, the devices show a threshold voltage shift of ΔVTH=-0.25 V demonstrating one of the key device reliability requirements for high temperature operation.


2019 ◽  
Vol 13 ((04) 2019) ◽  
pp. 578-587 ◽  
Author(s):  
Muhammed Alsamir ◽  
Nabil Ahmad ◽  
Vivi Arief ◽  
Tariq Mahmood ◽  
Richard Trethowan

Tomato is a mild season crop and high temperature stress impacts productivity negatively. However, the development of cultivars with improved heat tolerance is possible as genetic variability has been consistently reported. This study aimed to identify candidate genes that impact various traits under heat stress. Genome-wide association studies (GWAS) were conducted on a diverse set of 144 tomato genotypes collected from various germplasm centers and breeding programs. The genotypes were grown under control and heat stress in poly tunnels having mean temperatures of 30°C and 45°C for two seasons and phenotypic data were collected on seven agro-physiological traits. All individuals were genotyped withthe80K DArTseq platform using 31237 SNP markers. Data were analysed using a mixed model based on restricted maximum likelihood (REML). Pattern analysis of the phenotypic data showed five primary clusters each with genotypes from multiple origins. Based on the genotypic data, three wild tomato genotypes showed a degree of un-relatedness with the other materials as they were distantly located from the rest of the genotypes in the scatter plot. Control treatment data were used to ascertain markers that are exclusively important under high temperature stress. A large number of markers were significantly associated with various traits under heat stress. These included strong marker associations for number of inflorescence/plant (IPP), number of flowers/inflorescence (FPI), fresh fruit weight (FFrW), and electrolyte leakage (EL). High association with EL was found due to two SNPs 7858523|F|0-25:G>A-25:G>A and 4705224|F|0-60:C>G-60:C>G located on Chr 6. Other less pronounced marker-trait associations were observed for plant dry weight (PDW), and number of fruit/plant (FrPP).


Sign in / Sign up

Export Citation Format

Share Document