common land model
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 126
Author(s):  
Minzhuo Ou ◽  
Shupeng Zhang

Soil moisture is a key state variable in land surface processes. Since field measurements of soil moisture are generally sparse and remote sensing is limited in terms of observation depth, land surface model simulations are usually used to continuously obtain soil moisture data in time and space. Therefore, it is crucial to evaluate the performance of models that simulate soil moisture under various land surface conditions. In this work, we evaluated and compared two land surface models, the Common Land Model version 2014 (CoLM2014) and the Community Land Model Version 5 (CLM5), using in situ soil moisture observations from the Soil Climate Analysis Network (SCAN). The meteorological and soil attribute data used to drive the models were obtained from SCAN station observations, as were the soil moisture data used to validate the simulation results. The validation results revealed that the correlation coefficients between the simulations by CLM5 (0.38) and observations are generally higher than those by CoLM2014 (0.11), especially in shallow soil (0–0.1016 m). The simulation results by CoLM2014 have smaller bias than those by CLM5 . Both models could simulate diurnal and seasonal variations of soil moisture at seven sites, but we found a large bias, which may be due to the two models’ representation of infiltration and lateral flow processes. The bias of the simulated infiltration rate can affect the soil moisture simulation, and the lack of a lateral flow scheme can affect the models’ division of saturated and unsaturated areas within the soil column. The parameterization schemes in land surface models still need to be improved, especially for soil simulations at small scales.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 722
Author(s):  
Hongmei Li ◽  
Xingjie Lu ◽  
Zhongwang Wei ◽  
Siguang Zhu ◽  
Nan Wei ◽  
...  

Transpiration represents more than 30% of the global land–atmosphere water exchange but is highly uncertain. Plant hydraulics was ignored in traditional land surface modeling, but recently plant hydraulics has been found to play an essential role in transpiration simulation. A new physical-based representation of plant hydraulic schemes (PHS) was recently developed and implemented in the Common Land Model (CoLM). However, it is unclear to what extent PHS can reduce these uncertainties. Here, we evaluated the PHS against measurements obtained at 81 FLUXNET sites. The transpiration of each site was estimated using an empirical evapotranspiration partitioning approach. The metric scores defined by the International Land Model Benchmarking Project (ILAMB) were used to evaluate the model performance and compare it with that of the CoLM default scheme (soil moisture stress (SMS)). The bias score of transpiration in PHS was higher than SMS for most sites, and more significant improvements were found in semi-arid and arid sites where transpiration was limited by soil moisture. The hydraulic redistribution in PHS optimized the soil water supply and thus improved the transpiration estimates. In humid sites, no significant improvement in seasonal or interannual variability of transpiration was simulated by PHS, which can be explained by the insensitivity of transpiration demand coupled to the photosynthesis response to precipitation. In arid and semi-arid sites, seasonal or interannual variability of transpiration was better captured by PHS than SMS, which was interpreted by the improved drought sensitivity for transpiration. Arid land is widespread and is expected to expand due to climate change, thus there is an urgent need to couple PHS in land surface models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ai-Ling Jiang ◽  
Ming-Chieh Lee ◽  
Guofa Zhou ◽  
Daibin Zhong ◽  
Dawit Hawaria ◽  
...  

AbstractLarval source management has gained renewed interest as a malaria control strategy in Africa but the widespread and transient nature of larval breeding sites poses a challenge to its implementation. To address this problem, we propose combining an integrated high resolution (50 m) distributed hydrological model and remotely sensed data to simulate potential malaria vector aquatic habitats. The novelty of our approach lies in its consideration of irrigation practices and its ability to resolve complex ponding processes that contribute to potential larval habitats. The simulation was performed for the year of 2018 using ParFlow-Common Land Model (CLM) in a sugarcane plantation in the Oromia region, Ethiopia to examine the effects of rainfall and irrigation. The model was calibrated using field observations of larval habitats to successfully predict ponding at all surveyed locations from the validation dataset. Results show that without irrigation, at least half of the area inside the farms had a 40% probability of potential larval habitat occurrence. With irrigation, the probability increased to 56%. Irrigation dampened the seasonality of the potential larval habitats such that the peak larval habitat occurrence window during the rainy season was extended into the dry season. Furthermore, the stability of the habitats was prolonged, with a significant shift from semi-permanent to permanent habitats. Our study provides a hydrological perspective on the impact of environmental modification on malaria vector ecology, which can potentially inform malaria control strategies through better water management.


2020 ◽  
Vol 13 (3) ◽  
pp. 1373-1397 ◽  
Author(s):  
Benjamin N. O. Kuffour ◽  
Nicholas B. Engdahl ◽  
Carol S. Woodward ◽  
Laura E. Condon ◽  
Stefan Kollet ◽  
...  

Abstract. Surface flow and subsurface flow constitute a naturally linked hydrologic continuum that has not traditionally been simulated in an integrated fashion. Recognizing the interactions between these systems has encouraged the development of integrated hydrologic models (IHMs) capable of treating surface and subsurface systems as a single integrated resource. IHMs are dynamically evolving with improvements in technology, and the extent of their current capabilities are often only known to the developers and not general users. This article provides an overview of the core functionality, capability, applications, and ongoing development of one open-source IHM, ParFlow. ParFlow is a parallel, integrated, hydrologic model that simulates surface and subsurface flows. ParFlow solves the Richards equation for three-dimensional variably saturated groundwater flow and the two-dimensional kinematic wave approximation of the shallow water equations for overland flow. The model employs a conservative centered finite-difference scheme and a conservative finite-volume method for subsurface flow and transport, respectively. ParFlow uses multigrid-preconditioned Krylov and Newton–Krylov methods to solve the linear and nonlinear systems within each time step of the flow simulations. The code has demonstrated very efficient parallel solution capabilities. ParFlow has been coupled to geochemical reaction, land surface (e.g., the Common Land Model), and atmospheric models to study the interactions among the subsurface, land surface, and atmosphere systems across different spatial scales. This overview focuses on the current capabilities of the code, the core simulation engine, and the primary couplings of the subsurface model to other codes, taking a high-level perspective.


2019 ◽  
Author(s):  
Benjamin N. O. Kuffour ◽  
Nicholas B. Engdahl ◽  
Carol S. Woodward ◽  
Laura E. Condon ◽  
Stefan Kollet ◽  
...  

Abstract. Surface and subsurface flow constitute a naturally linked hydrologic continuum that has not traditionally been simulated in an integrated fashion. Recognizing the interactions between these systems has encouraged the development of integrated hydrologic models (IHMs) capable of treating surface and subsurface systems as a single integrated resource. IHMs is dynamically evolving with improvement in technology and the extent of their current capabilities are often only known to the developers and not general users. This article provides an overview of the core functionality, capability, applications, and ongoing development of one open-source IHM, ParFlow. ParFlow is a parallel, integrated, hydrologic model that simulates surface and subsurface flows. ParFlow solves Richards’ equation for three-dimensional variably saturated groundwater flow and the two-dimensional kinematic wave approximation of the shallow water equations for overland flow. The model employs a conservative centered finite difference scheme and a conservative finite volume method for subsurface flow and transport, respectively. ParFlow uses multigrid preconditioned Krylov and Newton-Krylov methods to solve the linear and nonlinear systems within each time step of the flow simulations. The code has demonstrated very efficient parallel solution capabilities. ParFlow has been coupled to geochemical reaction, land surface (e.g. Common Land Model), and atmospheric models to study the interactions among the subsurface, land surface, and the atmosphere systems across different spatial scales. This overview focuses on the current capabilities of the code, the core simulation engine, and the primary couplings of the subsurface model to other codes, taking a high-level perspective.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Chunlei Meng ◽  
Wenlong Zhang

Land surface evaporation is not only an important parameter in natural land surface modeling, but a crucial important parameter in urban hydrology modeling. A whole-layer soil evaporation scheme was developed in the integrated urban land model (IUM) to improve the soil evaporation simulation. The impervious surface evaporation (ISE) was used as a component of urban water balance equation. In this paper, the integrated urban land model was validated at one desert site and six urban road sites to emphasize the improvement in the evaporation simulations for arid and urban areas. A sensitivity analysis was implemented in seven basins to expand the utility of the whole layer soil evaporation scheme. For the urban road sites, the validation results indicate that imperious surface evaporation (ISE) plays a crucial role in road surface temperature (RST) simulations on rainy days. For the desert site, the validation results show that the inner layer evaporation is very important in arid regions. For the basins, the analysis results indicate that the relative monthly mean differences in the evapotranspiration (ET) between the simulations with (IUM) and without (Common Land Model (CoLM)) considering the inner layer evaporation range from −8% to 8%, which is proportional to the degree of dryness. In arid areas, especially deserts, the inner layer soil evaporation could not be neglected.


2018 ◽  
Vol 10 (9) ◽  
pp. 3281 ◽  
Author(s):  
Xiuliang Yuan ◽  
Jie Bai

Evapotranspiration is the highest outgoing flux in the hydrological cycle in Xinjiang, Northwest China. Quantifying the temporal and spatial patterns of future evapotranspiration is vital to appropriately manage water resources in water shortage drylands. In this study, the Common Land Model (CoLM) was used to estimate the regional evapotranspiration during the period 2021–2050, and its projected changes in response to climate change under two Representative Concentration Pathways (RCP) scenarios (i.e., RCP4.5 and RCP8.5) were analyzed using the Singular Value Decomposition (SVD) technique. The results indicated that the mean regional evapotranspiration was comparable under the two scenarios during 2021–2050, with a value of 127 (±11.9) mm/year under the RCP4.5 scenario, and 124 (±11.1) mm/year under the RCP8.5 scenario, respectively. Compared to the historical period of 1996–2005, the annual mean evapotranspiration during 2041–2050 will marginally decrease by 0.3 mm under the RCP4.5 scenario and by 0.4 mm under the RCP8.5 scenario, respectively. Empirical Orthogonal Function (EOF) analyses show that the evapotranspiration in relative high altitudes of Xinjiang present strong variations. The SVD analyses suggest that the changes in evapotranspiration are more closely linked to local precipitation variations than to temperature. The results would provide reliable suggestions to understand future changed in evapotranspiration and improve the regional strategy for water resource management in Xinjiang.


2018 ◽  
Vol 57 (9) ◽  
pp. 2071-2089 ◽  
Author(s):  
Sha Lu ◽  
Hongchao Zuo

AbstractPlastic mulch is a technology used worldwide to inhibit soil evaporation and increase crop yield. The properties of plastic film are significantly different from those of the soil. Plastic mulch not only significantly alters the physical attributes of the underlying surface, but also blocks the energy and mass exchanges between the land surface and the atmosphere. This latter situation has not been depicted in current land-surface models. This study develops a detailed new model, known as CoLM-mulch, by incorporating a plastic mulch–layer submodel and a dynamic parameterization scheme of surface albedo into the Common Land Model (CoLM) land-surface process model. The updated model elements are based on data collected from an experiment that examined land–atmosphere interaction at a plastic-film-covered cropland site in an arid region of northwestern China. Results suggest that the improved CoLM-mulch could reasonably simulate the diurnal variations of soil temperature and moisture, together with radiation, water, heat, and carbon dioxide (CO2) fluxes, on the cropland underlying a surface with a plastic film covering. The CoLM-mulch efficiency is higher, the deviations between the simulations and observations are minor, and the dynamic parameterization scheme for surface albedo is more reasonable and appropriate. Relative to CoLM simulations, the inclusion of plastic mulch with special optical properties in the model shows slight improvements in the simulations of the surface albedo and the radiation balance. By limiting the underlying soil evaporation and changing the aerodynamic resistances, plastic mulch in the model has influences on the turbulent exchanges between the atmosphere and the land surface. The soil temperature and moisture are improved by the inclusion of transparent plastic mulch in the model, which not only suppresses the CO2 generated by soil respiration, but also alters the CO2 exchange process between the canopy and the atmosphere as a result of the vegetation net assimilation controlled by the soil water and heat conditions.


Sign in / Sign up

Export Citation Format

Share Document