Field analysis of corona shield of high voltage rotating machine by time-periodic finite element method Part I. Numerical calculation method

1982 ◽  
Vol 102 (4) ◽  
pp. 32-40 ◽  
Author(s):  
Takehisa Hara ◽  
Tadashi Naito ◽  
Juro Umoto
2014 ◽  
Vol 8 (1) ◽  
pp. 467-473
Author(s):  
Jiaxian Li

At present, the finite element method has been widely used in electrical engineering; value has an absolute advantage in the field of solving the problem of position in the electromagnetic boundary. From the perspective of historical development, for solving the electromagnetic boundary value problems, four kinds of methods are used namely; graphical method, simulation method, analytical method and numerical calculation . This study introduced finite element method which has developed rapidly. Before finite element method, numerical calculation method was used, although this method was effective to a certain extent but the results showed that it had a limited range of the electromagnetic boundary value problems to be solved.


Author(s):  
Shimpei Kakita ◽  
Yoshifumi Okamoto

Purpose The paper aims to improve convergence characteristics of the Newton–Raphson (NR) method applied to time-periodic finite element method using various line searches, as time-periodic finite element method causes deterioration of convergence characteristic of nonlinear analysis based on NR method. The study also aims to accelerate and improve accuracy of electromagnetic field analysis for improvement of the performance of electrical machine. Design/methodology/approach The paper proposes new type line searches that set approximate step size for NR method. The line search evaluated step size using higher-order interpolation of functional derivative. In addition, two criteria for applying these line search were proposed. First method set one scalar value for every NR iteration that is named constant step size. Second method define different step size in each time step of time-periodic finite element method to update solution vector that is named different step size. Findings The paper provides efficient line searches to improve convergence characteristics for NR method. Nonlinear magnetic field analysis of two transformer models is demonstrated. The proposed methods achieve the following results: higher-order functional NR is efficient in improving convergence characteristics, and the proposed methods succeeded about twice faster in both models. Originality/value The paper fulfills improvement of convergence characteristics of the NR method applied to time-periodic finite element method using proposed line searches and accelerate electromagnetic field analysis.


1995 ◽  
Vol 31 (3) ◽  
pp. 1416-1419 ◽  
Author(s):  
T. Nakata ◽  
N. Takahashi ◽  
K. Fujiwara ◽  
K. Muramatsu ◽  
H. Ohashi ◽  
...  

1985 ◽  
Vol 105 (5) ◽  
pp. 475-482
Author(s):  
Takayoshi Nakata ◽  
Yoshihiro Kawase ◽  
Takashi Matsubara ◽  
Syokichi Ito

2013 ◽  
Vol 49 (5) ◽  
pp. 2413-2416 ◽  
Author(s):  
Yasuhito Takahashi ◽  
Tadashi Tokumasu ◽  
Masafumi Fujita ◽  
Takeshi Iwashita ◽  
Hiroshi Nakashima ◽  
...  

2009 ◽  
Vol 152-153 ◽  
pp. 407-410
Author(s):  
Ilona Ilieva Iatcheva ◽  
Rumena Stancheva ◽  
Hristofor Tahrilov ◽  
Ilonka Lilianova

The aim of the work is precise coupled –electromagnetic and temperature field analysis of an induction heating system by finite element method. Presented example is referred to real induction heating system. The problem was solved as nonlinear, transient and axisymmetrical. The numerical model of the coupled fields is based on the finite element method and electromagnetic and temperature distributions have been obtained using COMSOL 3.3 software package.


Sign in / Sign up

Export Citation Format

Share Document