Characteristics of lightning strikes on wind turbine blades. Experimental study of the effects of receptor configuration and other parameters

2011 ◽  
Vol 176 (3) ◽  
pp. 8-18
Author(s):  
Takatoshi Shindo ◽  
Akira Asakawa ◽  
Megumu Miki
2017 ◽  
Vol 41 (3) ◽  
pp. 185-210 ◽  
Author(s):  
Md Abu S Shohag ◽  
Emily C Hammel ◽  
David O Olawale ◽  
Okenwa I Okoli

Wind blades are major structural elements of wind turbines, but they are prone to damage like any other composite component. Blade damage can cause sudden structural failure and the associated costs to repair them are high. Therefore, it is important to identify the causation of damage to prevent defects during the manufacturing phase, transportation, and in operation. Generally, damage in wind blades can arise due to manufacturing defects, precipitation and debris, water ingress, variable loading due to wind, operational errors, lightning strikes, and fire. Early detection and mitigation techniques are required to avoid or reduce damage in costly wind turbine blades. This article provides an extensive review of viable solutions and approaches for damage mitigation in wind turbine blades.


2021 ◽  
Vol 263 (6) ◽  
pp. 71-82
Author(s):  
Braj Bhushan Prasad ◽  
Fabian Duvigneau ◽  
Daniel Juhre ◽  
Elmar Woschke

Sound emission from an onshore wind turbine is one of the significant hurdles to use wind energy to its full potential. The vibration caused by the generator is transmitted to the blades, which radiates the sound to the surrounding. The purpose of this experimental study is to present a passive vibration reduction concept, which is based on the high damping properties of granular materials. The efficiency of this concept will be investigated using a laser scanning vibrometer device. For the experimental purpose in the laboratory, small-scale replicas inspired by the original configurations are used as reference geometries for the wind turbine generator and the blades. Vibrations of the prototype, with and without granular material filling, will be determined and compared with each other. The influence of the amount of granular material inside the structure is also investigated. Apart from this, different types of granular filling are examined with respect to their efficiency in reducing the amplitude of vibration of the structure while being as light as possible in order to design a lightweight solution, which increases the overall mass of the wind turbine marginally.


Wind Energy ◽  
2019 ◽  
Vol 22 (11) ◽  
pp. 1603-1621 ◽  
Author(s):  
Jiangyan Yan ◽  
Guozheng Wang ◽  
Yufei Ma ◽  
Zixin Guo ◽  
Hanwen Ren ◽  
...  

2017 ◽  
Vol 122 ◽  
pp. 197-205 ◽  
Author(s):  
Jiangyan Yan ◽  
Qingmin Li ◽  
Zixin Guo ◽  
Yufei Ma ◽  
Guozheng Wang ◽  
...  

Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Takuto Matsui ◽  
Kazuo Yamamoto ◽  
Jun Ogata

There have been many reports of damage to wind turbine blades caused by lightning strikes in Japan. In some of these cases, the blades struck by lightning continue to rotate, causing more serious secondary damage. To prevent such accidents, it is a requirement that a lightning detection system is installed on the wind turbine in areas where winter lightning occurs in Japan. This immediately stops the wind turbine if the system detects a lightning strike. Normally, these wind turbines are restarted after confirming soundness of the blade through visual inspection. However, it is often difficult to confirm the soundness of the blade visually for reasons such as bad weather. This process prolongs the time taken to restart, and it is one of the causes that reduces the availability of the wind turbines. In this research, we constructed a damage detection model for wind turbine blades using machine learning based on SCADA system data and, thereby, considered whether the technology automatically confirms the soundness of wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document