A Study on Cooperative Voltage and Frequency Control Method Using Distributed Generations Considering Large Penetration of Renewable Energy Sources

2016 ◽  
Vol 197 (2) ◽  
pp. 3-12 ◽  
Author(s):  
YUSUKE SHIOHARA ◽  
TAKAO TSUJI ◽  
TSUTOMU OYAMA ◽  
TAKAO SHINJI ◽  
MASAYUKI TADOKORO
Author(s):  
Takahiro Uehara ◽  
Dang Ngoc Son ◽  
Hidehito Matayoshi ◽  
Mohamed Lotfy ◽  
Tomonobu Senju ◽  
...  

AbstractIn response to mounting concerns regarding environmental problem and depletion of Energy Resources, the introduction of Renewable Energy Sources (RESs), has been advancing in recent years. The system frequency deviation is a serious problem for a RESs-integrated power system. In this paper, we propose a system frequency control method using the automated demand response (ADR) for an isolated power system with RESs. The ADR can automatically adjust the consumption power of appliances after receiving the DR signal. It is assumed that consumption power of controllable loads is automatically varied based on the electricity price information from the real-time pricing (RTP). This method improves the supply-demand balancing, and hence the system frequency control is achieved. Furthermore, the stability of controller is demonstrated by indicating the poles of the control system.


2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 573
Author(s):  
Mohamed Mokhtar ◽  
Mostafa I. Marei ◽  
Mariam A. Sameh ◽  
Mahmoud A. Attia

The frequency of power systems is very sensitive to load variations. Additionally, with the increased penetration of renewable energy sources in electrical grids, stabilizing the system frequency becomes more challenging. Therefore, Load Frequency Control (LFC) is used to keep the frequency within its acceptable limits. In this paper, an adaptive controller is proposed to enhance the system performance under load variations. Moreover, the proposed controller overcomes the disturbances resulting from the natural operation of the renewable energy sources such as Wave Energy Conversion System (WECS) and Photovoltaic (PV) system. The superiority of the proposed controller compared to the classical LFC schemes is that it has auto tuned parameters. The validation of the proposed controller is carried out through four case studies. The first case study is dedicated to a two-area LFC system under load variations. The WECS is considered as a disturbance for the second case study. Moreover, to demonstrate the superiority of the proposed controller, the dynamic performance is compared with previous work based on an optimized controller in the third case study. Finally in the fourth case study, a sensitivity analysis is carried out through parameters variations in the nonlinear PV-thermal hybrid system. The novel application of the adaptive controller into the LFC leads to enhance the system performance under disturbance of different sources of renewable energy. Moreover, a robustness test is presented to validate the reliability of the proposed controller.


2021 ◽  
Vol 850 (1) ◽  
pp. 012017
Author(s):  
J Shri Saranyaa ◽  
A Peer Fathima ◽  
Asutosh Mishra ◽  
Rushali Ghosh ◽  
Shalmali Das

Abstract Modern day scenario has an increasing power demand due to the growing development which indeed increases the load on the generation which might cause turbulence in the system and may bounce out of stability. The governor itself can’t handle such frequent load changes and adjust the generation amount to keep the frequency between the margins. This paper proposes an approach towards such predicament to incorporate an optimization method in order to ensure stability of the system despite the drastic changes in demand. Load frequency control is a control method for maintaining the frequency of the system during the change in demand. Use of controllers has proven to be effective in controlling the frequency deviations in the power systems and the response of the controller is further improved using optimization technique for better stability. The PID controller tuned by Particle Swarm Optimization is employed in multi-area system which reduces the time response by a considerable amount and the deviation settles much quicker despite the rapid load changes. The proposed controller is executed further for renewable energy sources connected to the individual areas and demonstration proves that the optimized controller is efficient enough in handling the frequency deviations when wind and solar with sunlight penetration is incorporated.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3026 ◽  
Author(s):  
Watcharakorn Pinthurat ◽  
Branislav Hredzak

The penetration and integration of renewable energy sources into modern power systems has been increasing over recent years. This can lead to frequency excursion and low inertia due to renewable energy sources’ intermittency and absence of rotational synchronous machines. Battery energy storage systems can play a crucial role in providing the frequency compensation because of their high ramp rate and fast response. In this paper, a decentralized frequency control system composed of three parts is proposed. The first part provides adaptive frequency droop control with its droop coefficient a function of the real-time state of charge of battery. The second part provides a fully decentralized frequency restoration. In the third part, a virtual inertia emulation improves the microgrid resilience. The presented results demonstrate that the proposed control system improves the microgrid resilience and mitigates the frequency deviation when compared with conventional ω -P droop control and existing control systems. The proposed control system is verified on Real-Time Digital Simulator (RTDS), with accurate microgrid model, nonlinear battery models and detailed switching models of power electronic converters.


Sign in / Sign up

Export Citation Format

Share Document