Granulocyte-macrophage colony-stimulating factor-cultured bone marrow-derived macrophages reveal accessory cell function and synthesis of MHC class II determinants in the absence of external stimuli

1988 ◽  
Vol 18 (8) ◽  
pp. 1151-1158 ◽  
Author(s):  
Hans-Georg Fischer ◽  
Beate Opel ◽  
Konrad Reske ◽  
Angelia B. Reske-Kunz
1992 ◽  
Vol 176 (6) ◽  
pp. 1693-1702 ◽  
Author(s):  
K Inaba ◽  
M Inaba ◽  
N Romani ◽  
H Aya ◽  
M Deguchi ◽  
...  

Antigen-presenting, major histocompatibility complex (MHC) class II-rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II-negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent "stroma." At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type.


1994 ◽  
Vol 179 (6) ◽  
pp. 1823-1834 ◽  
Author(s):  
L Lu ◽  
J Woo ◽  
A S Rao ◽  
Y Li ◽  
S C Watkins ◽  
...  

Within 1 wk of liquid culture in granulocyte/macrophage colony-stimulating factor (GM-CSF), normal B10 BR (H-2k I-E+) mouse liver nonparenchymal cells (NPC) formed loosely adherent myeloid cell clusters that have been shown to contain dendritic cell (DC) progenitors in similar studies of mouse blood or bone marrow. Mononuclear cell progeny released from these clusters at and beyond 4 d exhibited distinct dendritic morphology and were actively phagocytic. After 6-10 d of culture, these cells strongly expressed CD45, CD11b, heat stable antigen, and CD44. However, the intensity of expression of the DC-restricted markers NLDC 145, 33D1, and N418, and the macrophage marker F4/80, intercellular adhesion molecule 1, and Fc gamma RII was low to moderate, whereas the cells were negative for CD3, CD45RA, and NK1.1. Splenocytes prepared in the same way also had a similar range and intensity of expression of these immunophenotypic markers. Unlike the splenic DC, however, most of the GM-CSF-propagated putative liver DC harvested at 6-10 d expressed only a low level of major histocompatibility complex (MHC) class II (I-Ek), and they failed to induce primary allogeneic responses in naive T cells, even when propagated additionally in GM-CSF and tumor necrosis alpha and/or interferon gamma-supplemented medium. However, when 7-d cultured GM-CSF-stimulated liver cells were maintained additionally for three or more days on type-1 collagen-coated plates in the continued presence of GM-CSF, they exhibited characteristics of mature DC: MHC class II expression was markedly upregulated, mixed leukocyte reaction stimulatory activity was increased, and phagocytic function was decreased. Similar observations were made when Ia+ cells were depleted from the GM-CSF-propagated cells before exposure to collagen. Further evidence that the GM-CSF-stimulated class IIdim or class II-depleted hepatic NPC were immature DC was obtained by injecting them into allogeneic B10 (H-2b I-E-) recipients. They "homed" to T cell-dependent areas of lymph nodes and spleen where they strongly expressed donor MHC class II antigen 1-5 d later. These observations provide insight into the regulation of DC maturation, and are congruent with the possibility that the migration of immature DC from normal liver and perhaps other organ allografts may help explain their inherent tolerogenicity.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769223 ◽  
Author(s):  
Qiaowei Zheng ◽  
Xueqian Li ◽  
Xiaoliang Cheng ◽  
Ting Cui ◽  
Yingcheng Zhuo ◽  
...  

Granulocyte-macrophage colony-stimulating factor has been widely used as an adjuvant therapy for cancer patients exhibiting myelosuppression induced by chemotherapy or radiotherapy. However, the effects of granulocyte-macrophage colony-stimulating factor on tumor growth, as well as its precise mechanism, are still controversial due to inconsistent evidence. This study investigated the effect of exogenous granulocyte-macrophage colony-stimulating factor on the growth of B16 melanoma, S180 sarcoma, and U14 cervical carcinoma in mice. The angiogenesis and recruitment of bone-marrow-derived cells were analyzed in tumor tissues. Interactions among granulocyte-macrophage colony-stimulating factor, bone-marrow-derived cells, and B16 tumor cells were investigated in vitro. Proangiogenic types of bone-marrow-derived cells in blood were assessed both in vivo and in vitro. The results showed that granulocyte-macrophage colony-stimulating factor markedly facilitated the growth of B16 and S180 tumors, but not U14 tumors. Granulocyte-macrophage colony-stimulating factor increased the densities of blood vessels and the number of bone-marrow-derived cells in B16 tumor tissues. The granulocyte-macrophage colony-stimulating factor–induced enhancement of tumor cell proliferation was mediated by bone-marrow-derived cells in vitro. Meanwhile, a distinct synergistic effect on endothelial cell function between granulocyte-macrophage colony-stimulating factor and bone-marrow-derived cells was observed. After separating two types of bone-marrow-derived cells, granulocyte-macrophage colony-stimulating factor–induced enhancement of tumor growth and angiogenesis in vivo was mediated by proangiogenic cells in granulocytes, but not monocytes, with CD11b+, vascular endothelial growth factor receptor 2, and C-X-C chemokine receptor 4 granulocytes possibly involved. These data suggest that granulocyte-macrophage colony-stimulating factor contributes to the growth and angiogenesis of certain types of tumor, and these mechanisms are probably mediated by proangiogenic cells in granulocytes. Applying granulocyte-macrophage colony-stimulating factor may attenuate the antitumor effects of chemotherapy and radiotherapy in certain types of tumor.


Cytokine ◽  
2005 ◽  
Vol 31 (4) ◽  
pp. 288-297 ◽  
Author(s):  
Naoko Yamada ◽  
Tohru Tsujimura ◽  
Haruyasu Ueda ◽  
Shin-Ichi Hayashi ◽  
Hideki Ohyama ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. L114-L122 ◽  
Author(s):  
Megan N. Ballinger ◽  
Leah L. N. Hubbard ◽  
Tracy R. McMillan ◽  
Galen B. Toews ◽  
Marc Peters-Golden ◽  
...  

Impaired host defense post-bone marrow transplant (BMT) is related to overproduction of prostaglandin E2(PGE2) by alveolar macrophages (AMs). We show AMs post-BMT overproduce granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas GM-CSF in lung homogenates is impaired both at baseline and in response to infection post-BMT. Homeostatic regulation of GM-CSF may occur by hematopoietic/structural cell cross talk. To determine whether AM overproduction of GM-CSF influenced immunosuppression post-BMT, we compared mice that received BMT from wild-type donors (control BMT) or mice that received BMT from GM-CSF−/− donors (GM-CSF−/− BMT) with untransplanted mice. GM-CSF−/− BMT mice were less susceptible to pneumonia with Pseudomonas aeruginosa compared with control BMT mice and showed antibacterial responses equal to or better than untransplanted mice. GM-CSF−/− BMT AMs displayed normal phagocytosis and a trend toward enhanced bacterial killing. Surprisingly, AMs from GM-CSF−/− BMT mice overproduced PGE2, but expression of the inhibitory EP2receptor was diminished. As a consequence of decreased EP2receptor expression, we found diminished accumulation of cAMP in response to PGE2stimulation in GM-CSF−/− BMT AMs compared with control BMT AMs. In addition, GM-CSF−/− BMT AMs retained cysteinyl leukotriene production and normal TNF-α response compared with AMs from control BMT mice. GM-CSF−/− BMT neutrophils also showed improved bacterial killing. Although genetic ablation of GM-CSF in hematopoietic cells post-BMT improved host defense, transplantation of wild-type bone marrow into GM-CSF−/− recipients demonstrated that parenchymal cell-derived GM-CSF is necessary for effective innate immune responses post-BMT. These results highlight the complex regulation of GM-CSF and innate immunity post-BMT.


Blood ◽  
1993 ◽  
Vol 81 (9) ◽  
pp. 2452-2459 ◽  
Author(s):  
J Rabinowitz ◽  
WP Petros ◽  
AR Stuart ◽  
WP Peters

Endogenous cytokines are thought to mediate numerous biologic processes and may account for some adverse effects experienced following the administration of recombinant proteins. This study describes the pattern of endogenous cytokine exposure following high-dose chemotherapy. Blood concentrations of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), macrophage colony-stimulating factor (M-CSF), and erythropoietin (EPO) were measured by enzyme-linked immunosorbent assay (ELISA) methods in 68 patients receiving the same ablative chemotherapy regimen (cyclophosphamide, cisplatin, carmustine). Patients were grouped according to cellular support (autologous bone marrow [BM] CSF-primed peripheral blood progenitor cells [PBPCs]) and prescribed growth factor (recombinant human granulocyte or granulocyte-macrophage colony-stimulating factor [rHuG- CSF or rHuGM-CSF]). Leukocyte reconstitution was most accelerated in the groups treated with PBPCs and rHuG-CSF. IL-6, M-CSF, and TNF-alpha concentrations were higher in the groups treated with rHuGM-CSF and without PBPCs. Maximal endogenous cytokine concentrations occurred approximately 12 days after BM reinfusion. High concentrations of EPO occurred in patients experiencing significant hypotension despite routine transfusions for hematocrit < 42%. High M-CSF and IL-6 levels were associated with increased platelet transfusion requirements. Concentrations of all four cytokines were significantly higher in patients experiencing renal or hepatic toxicity, with elevations occurring in a predictable sequence and M-CSF elevations occurring first. This report shows that endogenous cytokine concentrations may be influenced by either cellular or CSF support and are associated with differences in platelet reconstitution and organ toxicity.


Sign in / Sign up

Export Citation Format

Share Document